Jateendra commited on
Commit
8baff5c
·
1 Parent(s): e43bb15

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - emotion
7
+ model-index:
8
+ - name: nlp_bert_emo_classifier
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # nlp_bert_emo_classifier
16
+
17
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2720
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 2e-05
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - num_epochs: 4
45
+
46
+ ### Training results
47
+
48
+ | Training Loss | Epoch | Step | Validation Loss |
49
+ |:-------------:|:-----:|:----:|:---------------:|
50
+ | 0.9121 | 0.25 | 500 | 0.4423 |
51
+ | 0.325 | 0.5 | 1000 | 0.3190 |
52
+ | 0.2594 | 0.75 | 1500 | 0.2662 |
53
+ | 0.2534 | 1.0 | 2000 | 0.2902 |
54
+ | 0.1674 | 1.25 | 2500 | 0.2746 |
55
+ | 0.177 | 1.5 | 3000 | 0.1935 |
56
+ | 0.1371 | 1.75 | 3500 | 0.2247 |
57
+ | 0.1734 | 2.0 | 4000 | 0.2031 |
58
+ | 0.1138 | 2.25 | 4500 | 0.2314 |
59
+ | 0.1097 | 2.5 | 5000 | 0.2206 |
60
+ | 0.1171 | 2.75 | 5500 | 0.2538 |
61
+ | 0.1208 | 3.0 | 6000 | 0.2403 |
62
+ | 0.0801 | 3.25 | 6500 | 0.2614 |
63
+ | 0.0736 | 3.5 | 7000 | 0.2699 |
64
+ | 0.0733 | 3.75 | 7500 | 0.2726 |
65
+ | 0.071 | 4.0 | 8000 | 0.2720 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.15.0
71
+ - Pytorch 1.12.0+cu113
72
+ - Datasets 2.4.0
73
+ - Tokenizers 0.10.3