--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: nlp_bert_emo_classifier results: [] --- # nlp_bert_emo_classifier This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8887 | 0.25 | 500 | 0.4212 | | 0.3216 | 0.5 | 1000 | 0.3192 | | 0.2649 | 0.75 | 1500 | 0.2746 | | 0.2535 | 1.0 | 2000 | 0.2573 | | 0.163 | 1.25 | 2500 | 0.2157 | | 0.1868 | 1.5 | 3000 | 0.2118 | | 0.1258 | 1.75 | 3500 | 0.2319 | | 0.1726 | 2.0 | 4000 | 0.1853 | | 0.1035 | 2.25 | 4500 | 0.2146 | | 0.1135 | 2.5 | 5000 | 0.2207 | | 0.1117 | 2.75 | 5500 | 0.2496 | | 0.1145 | 3.0 | 6000 | 0.2482 | | 0.0726 | 3.25 | 6500 | 0.2654 | | 0.0828 | 3.5 | 7000 | 0.2622 | | 0.0817 | 3.75 | 7500 | 0.2775 | | 0.0689 | 4.0 | 8000 | 0.2791 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.10.3