JatinkInnovision commited on
Commit
4ef3c65
·
verified ·
1 Parent(s): 4855376

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,535 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:557850
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: Snowflake/snowflake-arctic-embed-l-v2.0
12
+ widget:
13
+ - source_sentence: A construction worker is standing on a crane placing a large arm
14
+ on top of a stature in progress.
15
+ sentences:
16
+ - A man is playing with his camera.
17
+ - A person standing
18
+ - Nobody is standing
19
+ - source_sentence: A boy in red slides down an inflatable ride.
20
+ sentences:
21
+ - a baby smiling
22
+ - A boy is playing on an inflatable ride.
23
+ - A boy pierces a knife through an inflatable ride.
24
+ - source_sentence: A man in a black shirt is playing a guitar.
25
+ sentences:
26
+ - A group of women are selling their wares
27
+ - The man is wearing black.
28
+ - The man is wearing a blue shirt.
29
+ - source_sentence: A man with a large power drill standing next to his daughter with
30
+ a vacuum cleaner hose.
31
+ sentences:
32
+ - A man holding a drill stands next to a girl holding a vacuum hose.
33
+ - Kids ride an amusement ride.
34
+ - The man and girl are painting the walls.
35
+ - source_sentence: A middle-aged man works under the engine of a train on rail tracks.
36
+ sentences:
37
+ - A guy is working on a train.
38
+ - Two young asian men are squatting.
39
+ - A guy is driving to work.
40
+ datasets:
41
+ - sentence-transformers/all-nli
42
+ pipeline_tag: sentence-similarity
43
+ library_name: sentence-transformers
44
+ metrics:
45
+ - cosine_accuracy
46
+ model-index:
47
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
48
+ results:
49
+ - task:
50
+ type: triplet
51
+ name: Triplet
52
+ dataset:
53
+ name: all nli test
54
+ type: all-nli-test
55
+ metrics:
56
+ - type: cosine_accuracy
57
+ value: 0.9558178241791496
58
+ name: Cosine Accuracy
59
+ ---
60
+
61
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
62
+
63
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
64
+
65
+ ## Model Details
66
+
67
+ ### Model Description
68
+ - **Model Type:** Sentence Transformer
69
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) <!-- at revision 7f311bb640ad3babc0a4e3a8873240dcba44c9d2 -->
70
+ - **Maximum Sequence Length:** 8192 tokens
71
+ - **Output Dimensionality:** 1024 dimensions
72
+ - **Similarity Function:** Cosine Similarity
73
+ - **Training Dataset:**
74
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
75
+ - **Language:** en
76
+ <!-- - **License:** Unknown -->
77
+
78
+ ### Model Sources
79
+
80
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
81
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
82
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
83
+
84
+ ### Full Model Architecture
85
+
86
+ ```
87
+ SentenceTransformer(
88
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
89
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
90
+ (2): Normalize()
91
+ )
92
+ ```
93
+
94
+ ## Usage
95
+
96
+ ### Direct Usage (Sentence Transformers)
97
+
98
+ First install the Sentence Transformers library:
99
+
100
+ ```bash
101
+ pip install -U sentence-transformers
102
+ ```
103
+
104
+ Then you can load this model and run inference.
105
+ ```python
106
+ from sentence_transformers import SentenceTransformer
107
+
108
+ # Download from the 🤗 Hub
109
+ model = SentenceTransformer("JatinkInnovision/snowflake-arctic-embed-l-v2.0_all-nli")
110
+ # Run inference
111
+ sentences = [
112
+ 'A middle-aged man works under the engine of a train on rail tracks.',
113
+ 'A guy is working on a train.',
114
+ 'A guy is driving to work.',
115
+ ]
116
+ embeddings = model.encode(sentences)
117
+ print(embeddings.shape)
118
+ # [3, 1024]
119
+
120
+ # Get the similarity scores for the embeddings
121
+ similarities = model.similarity(embeddings, embeddings)
122
+ print(similarities.shape)
123
+ # [3, 3]
124
+ ```
125
+
126
+ <!--
127
+ ### Direct Usage (Transformers)
128
+
129
+ <details><summary>Click to see the direct usage in Transformers</summary>
130
+
131
+ </details>
132
+ -->
133
+
134
+ <!--
135
+ ### Downstream Usage (Sentence Transformers)
136
+
137
+ You can finetune this model on your own dataset.
138
+
139
+ <details><summary>Click to expand</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Out-of-Scope Use
146
+
147
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
148
+ -->
149
+
150
+ ## Evaluation
151
+
152
+ ### Metrics
153
+
154
+ #### Triplet
155
+
156
+ * Dataset: `all-nli-test`
157
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
158
+
159
+ | Metric | Value |
160
+ |:--------------------|:-----------|
161
+ | **cosine_accuracy** | **0.9558** |
162
+
163
+ <!--
164
+ ## Bias, Risks and Limitations
165
+
166
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
167
+ -->
168
+
169
+ <!--
170
+ ### Recommendations
171
+
172
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
173
+ -->
174
+
175
+ ## Training Details
176
+
177
+ ### Training Dataset
178
+
179
+ #### all-nli
180
+
181
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
182
+ * Size: 557,850 training samples
183
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
184
+ * Approximate statistics based on the first 1000 samples:
185
+ | | anchor | positive | negative |
186
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
187
+ | type | string | string | string |
188
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.9 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.62 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 55 tokens</li></ul> |
189
+ * Samples:
190
+ | anchor | positive | negative |
191
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
192
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
193
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
194
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
195
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
196
+ ```json
197
+ {
198
+ "scale": 20.0,
199
+ "similarity_fct": "cos_sim"
200
+ }
201
+ ```
202
+
203
+ ### Evaluation Dataset
204
+
205
+ #### all-nli
206
+
207
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
208
+ * Size: 6,584 evaluation samples
209
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
210
+ * Approximate statistics based on the first 1000 samples:
211
+ | | anchor | positive | negative |
212
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
213
+ | type | string | string | string |
214
+ | details | <ul><li>min: 6 tokens</li><li>mean: 20.31 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.71 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.39 tokens</li><li>max: 32 tokens</li></ul> |
215
+ * Samples:
216
+ | anchor | positive | negative |
217
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
218
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
219
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
220
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
221
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
222
+ ```json
223
+ {
224
+ "scale": 20.0,
225
+ "similarity_fct": "cos_sim"
226
+ }
227
+ ```
228
+
229
+ ### Training Hyperparameters
230
+ #### Non-Default Hyperparameters
231
+
232
+ - `eval_strategy`: steps
233
+ - `per_device_train_batch_size`: 50
234
+ - `per_device_eval_batch_size`: 50
235
+ - `num_train_epochs`: 1
236
+ - `warmup_ratio`: 0.1
237
+ - `fp16`: True
238
+ - `batch_sampler`: no_duplicates
239
+
240
+ #### All Hyperparameters
241
+ <details><summary>Click to expand</summary>
242
+
243
+ - `overwrite_output_dir`: False
244
+ - `do_predict`: False
245
+ - `eval_strategy`: steps
246
+ - `prediction_loss_only`: True
247
+ - `per_device_train_batch_size`: 50
248
+ - `per_device_eval_batch_size`: 50
249
+ - `per_gpu_train_batch_size`: None
250
+ - `per_gpu_eval_batch_size`: None
251
+ - `gradient_accumulation_steps`: 1
252
+ - `eval_accumulation_steps`: None
253
+ - `torch_empty_cache_steps`: None
254
+ - `learning_rate`: 5e-05
255
+ - `weight_decay`: 0.0
256
+ - `adam_beta1`: 0.9
257
+ - `adam_beta2`: 0.999
258
+ - `adam_epsilon`: 1e-08
259
+ - `max_grad_norm`: 1.0
260
+ - `num_train_epochs`: 1
261
+ - `max_steps`: -1
262
+ - `lr_scheduler_type`: linear
263
+ - `lr_scheduler_kwargs`: {}
264
+ - `warmup_ratio`: 0.1
265
+ - `warmup_steps`: 0
266
+ - `log_level`: passive
267
+ - `log_level_replica`: warning
268
+ - `log_on_each_node`: True
269
+ - `logging_nan_inf_filter`: True
270
+ - `save_safetensors`: True
271
+ - `save_on_each_node`: False
272
+ - `save_only_model`: False
273
+ - `restore_callback_states_from_checkpoint`: False
274
+ - `no_cuda`: False
275
+ - `use_cpu`: False
276
+ - `use_mps_device`: False
277
+ - `seed`: 42
278
+ - `data_seed`: None
279
+ - `jit_mode_eval`: False
280
+ - `use_ipex`: False
281
+ - `bf16`: False
282
+ - `fp16`: True
283
+ - `fp16_opt_level`: O1
284
+ - `half_precision_backend`: auto
285
+ - `bf16_full_eval`: False
286
+ - `fp16_full_eval`: False
287
+ - `tf32`: None
288
+ - `local_rank`: 0
289
+ - `ddp_backend`: None
290
+ - `tpu_num_cores`: None
291
+ - `tpu_metrics_debug`: False
292
+ - `debug`: []
293
+ - `dataloader_drop_last`: False
294
+ - `dataloader_num_workers`: 0
295
+ - `dataloader_prefetch_factor`: None
296
+ - `past_index`: -1
297
+ - `disable_tqdm`: False
298
+ - `remove_unused_columns`: True
299
+ - `label_names`: None
300
+ - `load_best_model_at_end`: False
301
+ - `ignore_data_skip`: False
302
+ - `fsdp`: []
303
+ - `fsdp_min_num_params`: 0
304
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
305
+ - `fsdp_transformer_layer_cls_to_wrap`: None
306
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
307
+ - `deepspeed`: None
308
+ - `label_smoothing_factor`: 0.0
309
+ - `optim`: adamw_torch
310
+ - `optim_args`: None
311
+ - `adafactor`: False
312
+ - `group_by_length`: False
313
+ - `length_column_name`: length
314
+ - `ddp_find_unused_parameters`: None
315
+ - `ddp_bucket_cap_mb`: None
316
+ - `ddp_broadcast_buffers`: False
317
+ - `dataloader_pin_memory`: True
318
+ - `dataloader_persistent_workers`: False
319
+ - `skip_memory_metrics`: True
320
+ - `use_legacy_prediction_loop`: False
321
+ - `push_to_hub`: False
322
+ - `resume_from_checkpoint`: None
323
+ - `hub_model_id`: None
324
+ - `hub_strategy`: every_save
325
+ - `hub_private_repo`: None
326
+ - `hub_always_push`: False
327
+ - `gradient_checkpointing`: False
328
+ - `gradient_checkpointing_kwargs`: None
329
+ - `include_inputs_for_metrics`: False
330
+ - `include_for_metrics`: []
331
+ - `eval_do_concat_batches`: True
332
+ - `fp16_backend`: auto
333
+ - `push_to_hub_model_id`: None
334
+ - `push_to_hub_organization`: None
335
+ - `mp_parameters`:
336
+ - `auto_find_batch_size`: False
337
+ - `full_determinism`: False
338
+ - `torchdynamo`: None
339
+ - `ray_scope`: last
340
+ - `ddp_timeout`: 1800
341
+ - `torch_compile`: False
342
+ - `torch_compile_backend`: None
343
+ - `torch_compile_mode`: None
344
+ - `dispatch_batches`: None
345
+ - `split_batches`: None
346
+ - `include_tokens_per_second`: False
347
+ - `include_num_input_tokens_seen`: False
348
+ - `neftune_noise_alpha`: None
349
+ - `optim_target_modules`: None
350
+ - `batch_eval_metrics`: False
351
+ - `eval_on_start`: False
352
+ - `use_liger_kernel`: False
353
+ - `eval_use_gather_object`: False
354
+ - `average_tokens_across_devices`: False
355
+ - `prompts`: None
356
+ - `batch_sampler`: no_duplicates
357
+ - `multi_dataset_batch_sampler`: proportional
358
+
359
+ </details>
360
+
361
+ ### Training Logs
362
+ <details><summary>Click to expand</summary>
363
+
364
+ | Epoch | Step | Training Loss | Validation Loss | all-nli-test_cosine_accuracy |
365
+ |:------:|:-----:|:-------------:|:---------------:|:----------------------------:|
366
+ | 0.0090 | 100 | 1.8838 | 0.6502 | - |
367
+ | 0.0179 | 200 | 1.2991 | 0.6177 | - |
368
+ | 0.0269 | 300 | 1.2721 | 0.6417 | - |
369
+ | 0.0359 | 400 | 1.2265 | 0.7053 | - |
370
+ | 0.0448 | 500 | 1.0111 | 0.7147 | - |
371
+ | 0.0538 | 600 | 1.0491 | 0.7457 | - |
372
+ | 0.0627 | 700 | 1.0186 | 0.7922 | - |
373
+ | 0.0717 | 800 | 1.135 | 0.8940 | - |
374
+ | 0.0807 | 900 | 1.0747 | 0.7007 | - |
375
+ | 0.0896 | 1000 | 0.9373 | 0.7298 | - |
376
+ | 0.0986 | 1100 | 0.9572 | 0.6809 | - |
377
+ | 0.1076 | 1200 | 1.1316 | 0.7260 | - |
378
+ | 0.1165 | 1300 | 0.9188 | 0.7085 | - |
379
+ | 0.1255 | 1400 | 0.9554 | 0.6876 | - |
380
+ | 0.1344 | 1500 | 0.9494 | 0.7492 | - |
381
+ | 0.1434 | 1600 | 0.811 | 0.7234 | - |
382
+ | 0.1524 | 1700 | 0.7766 | 0.6744 | - |
383
+ | 0.1613 | 1800 | 0.9317 | 0.7178 | - |
384
+ | 0.1703 | 1900 | 0.9148 | 0.6960 | - |
385
+ | 0.1793 | 2000 | 0.8643 | 0.6642 | - |
386
+ | 0.1882 | 2100 | 0.7604 | 0.6425 | - |
387
+ | 0.1972 | 2200 | 0.776 | 0.6347 | - |
388
+ | 0.2061 | 2300 | 0.8286 | 0.6581 | - |
389
+ | 0.2151 | 2400 | 0.8946 | 0.5866 | - |
390
+ | 0.2241 | 2500 | 0.8507 | 0.6845 | - |
391
+ | 0.2330 | 2600 | 0.7917 | 0.6091 | - |
392
+ | 0.2420 | 2700 | 0.8192 | 0.7073 | - |
393
+ | 0.2510 | 2800 | 0.8818 | 0.6584 | - |
394
+ | 0.2599 | 2900 | 0.8261 | 0.6112 | - |
395
+ | 0.2689 | 3000 | 0.8017 | 0.6883 | - |
396
+ | 0.2779 | 3100 | 0.8147 | 0.6450 | - |
397
+ | 0.2868 | 3200 | 0.8297 | 0.6086 | - |
398
+ | 0.2958 | 3300 | 0.7516 | 0.5857 | - |
399
+ | 0.3047 | 3400 | 0.8628 | 0.6061 | - |
400
+ | 0.3137 | 3500 | 0.7758 | 0.5751 | - |
401
+ | 0.3227 | 3600 | 0.7773 | 0.6022 | - |
402
+ | 0.3316 | 3700 | 0.7559 | 0.5446 | - |
403
+ | 0.3406 | 3800 | 0.796 | 0.5842 | - |
404
+ | 0.3496 | 3900 | 0.8295 | 0.5822 | - |
405
+ | 0.3585 | 4000 | 0.7292 | 0.5821 | - |
406
+ | 0.3675 | 4100 | 0.7475 | 0.6358 | - |
407
+ | 0.3764 | 4200 | 0.7916 | 0.5688 | - |
408
+ | 0.3854 | 4300 | 0.7214 | 0.5653 | - |
409
+ | 0.3944 | 4400 | 0.704 | 0.5564 | - |
410
+ | 0.4033 | 4500 | 0.7817 | 0.5876 | - |
411
+ | 0.4123 | 4600 | 0.7549 | 0.5358 | - |
412
+ | 0.4213 | 4700 | 0.7206 | 0.5785 | - |
413
+ | 0.4302 | 4800 | 0.7462 | 0.5568 | - |
414
+ | 0.4392 | 4900 | 0.665 | 0.5765 | - |
415
+ | 0.4481 | 5000 | 0.7743 | 0.5303 | - |
416
+ | 0.4571 | 5100 | 0.7055 | 0.5733 | - |
417
+ | 0.4661 | 5200 | 0.7004 | 0.6280 | - |
418
+ | 0.4750 | 5300 | 0.7021 | 0.5444 | - |
419
+ | 0.4840 | 5400 | 0.6858 | 0.5787 | - |
420
+ | 0.4930 | 5500 | 0.7007 | 0.6124 | - |
421
+ | 0.5019 | 5600 | 0.6722 | 0.5705 | - |
422
+ | 0.5109 | 5700 | 0.7124 | 0.5440 | - |
423
+ | 0.5199 | 5800 | 0.6657 | 0.5262 | - |
424
+ | 0.5288 | 5900 | 0.6784 | 0.5400 | - |
425
+ | 0.5378 | 6000 | 0.6644 | 0.5093 | - |
426
+ | 0.5467 | 6100 | 0.7195 | 0.5453 | - |
427
+ | 0.5557 | 6200 | 0.6958 | 0.5216 | - |
428
+ | 0.5647 | 6300 | 0.7202 | 0.5250 | - |
429
+ | 0.5736 | 6400 | 0.6921 | 0.5089 | - |
430
+ | 0.5826 | 6500 | 0.6926 | 0.5207 | - |
431
+ | 0.5916 | 6600 | 0.714 | 0.5084 | - |
432
+ | 0.6005 | 6700 | 0.6605 | 0.4943 | - |
433
+ | 0.6095 | 6800 | 0.7222 | 0.5058 | - |
434
+ | 0.6184 | 6900 | 0.7171 | 0.4950 | - |
435
+ | 0.6274 | 7000 | 0.6344 | 0.5110 | - |
436
+ | 0.6364 | 7100 | 0.7057 | 0.5197 | - |
437
+ | 0.6453 | 7200 | 0.6895 | 0.5096 | - |
438
+ | 0.6543 | 7300 | 0.7226 | 0.4819 | - |
439
+ | 0.6633 | 7400 | 0.6725 | 0.4780 | - |
440
+ | 0.6722 | 7500 | 0.7469 | 0.5145 | - |
441
+ | 0.6812 | 7600 | 0.7016 | 0.4969 | - |
442
+ | 0.6901 | 7700 | 0.6655 | 0.4965 | - |
443
+ | 0.6991 | 7800 | 0.7281 | 0.4913 | - |
444
+ | 0.7081 | 7900 | 0.6748 | 0.5121 | - |
445
+ | 0.7170 | 8000 | 0.6505 | 0.5207 | - |
446
+ | 0.7260 | 8100 | 0.6594 | 0.4823 | - |
447
+ | 0.7350 | 8200 | 0.7042 | 0.4903 | - |
448
+ | 0.7439 | 8300 | 0.6995 | 0.4630 | - |
449
+ | 0.7529 | 8400 | 0.634 | 0.4217 | - |
450
+ | 0.7619 | 8500 | 0.3772 | 0.3684 | - |
451
+ | 0.7708 | 8600 | 0.3416 | 0.3585 | - |
452
+ | 0.7798 | 8700 | 0.3113 | 0.3471 | - |
453
+ | 0.7887 | 8800 | 0.2793 | 0.3379 | - |
454
+ | 0.7977 | 8900 | 0.2577 | 0.3349 | - |
455
+ | 0.8067 | 9000 | 0.249 | 0.3320 | - |
456
+ | 0.8156 | 9100 | 0.2191 | 0.3290 | - |
457
+ | 0.8246 | 9200 | 0.2492 | 0.3255 | - |
458
+ | 0.8336 | 9300 | 0.2464 | 0.3258 | - |
459
+ | 0.8425 | 9400 | 0.2288 | 0.3247 | - |
460
+ | 0.8515 | 9500 | 0.2132 | 0.3248 | - |
461
+ | 0.8604 | 9600 | 0.2173 | 0.3259 | - |
462
+ | 0.8694 | 9700 | 0.2008 | 0.3223 | - |
463
+ | 0.8784 | 9800 | 0.2016 | 0.3219 | - |
464
+ | 0.8873 | 9900 | 0.1962 | 0.3195 | - |
465
+ | 0.8963 | 10000 | 0.1952 | 0.3185 | - |
466
+ | 0.9053 | 10100 | 0.1959 | 0.3158 | - |
467
+ | 0.9142 | 10200 | 0.2002 | 0.3138 | - |
468
+ | 0.9232 | 10300 | 0.1882 | 0.3150 | - |
469
+ | 0.9322 | 10400 | 0.1856 | 0.3124 | - |
470
+ | 0.9411 | 10500 | 0.1971 | 0.3143 | - |
471
+ | 0.9501 | 10600 | 0.1918 | 0.3137 | - |
472
+ | 0.9590 | 10700 | 0.1825 | 0.3147 | - |
473
+ | 0.9680 | 10800 | 0.1762 | 0.3155 | - |
474
+ | 0.9770 | 10900 | 0.1778 | 0.3139 | - |
475
+ | 0.9859 | 11000 | 0.1659 | 0.3138 | - |
476
+ | 0.9949 | 11100 | 0.1848 | 0.3131 | - |
477
+ | 1.0 | 11157 | - | - | 0.9558 |
478
+
479
+ </details>
480
+
481
+ ### Framework Versions
482
+ - Python: 3.10.12
483
+ - Sentence Transformers: 3.3.1
484
+ - Transformers: 4.47.1
485
+ - PyTorch: 2.5.1+cu121
486
+ - Accelerate: 1.2.1
487
+ - Datasets: 3.2.0
488
+ - Tokenizers: 0.21.0
489
+
490
+ ## Citation
491
+
492
+ ### BibTeX
493
+
494
+ #### Sentence Transformers
495
+ ```bibtex
496
+ @inproceedings{reimers-2019-sentence-bert,
497
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
498
+ author = "Reimers, Nils and Gurevych, Iryna",
499
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
500
+ month = "11",
501
+ year = "2019",
502
+ publisher = "Association for Computational Linguistics",
503
+ url = "https://arxiv.org/abs/1908.10084",
504
+ }
505
+ ```
506
+
507
+ #### MultipleNegativesRankingLoss
508
+ ```bibtex
509
+ @misc{henderson2017efficient,
510
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
511
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
512
+ year={2017},
513
+ eprint={1705.00652},
514
+ archivePrefix={arXiv},
515
+ primaryClass={cs.CL}
516
+ }
517
+ ```
518
+
519
+ <!--
520
+ ## Glossary
521
+
522
+ *Clearly define terms in order to be accessible across audiences.*
523
+ -->
524
+
525
+ <!--
526
+ ## Model Card Authors
527
+
528
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
529
+ -->
530
+
531
+ <!--
532
+ ## Model Card Contact
533
+
534
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
535
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l-v2.0",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.47.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "query: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3f550c56cebd317bb0dddafde1f561bde4a2b6adbde651773771d624003046e
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 8192,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }