Jbot commited on
Commit
d1580da
·
1 Parent(s): 1f866a7

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.59 +/- 0.86
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ae2f8236705a7ed9a3fa31531636f8148a19c9b549a8e035e872e701025b4b4
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd4c5300430>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fd4c52faa20>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674504964613011048,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcgzPPjUAkbx81RE/cgzPPjUAkbx81RE/cgzPPjUAkbx81RE/cgzPPjUAkbx81RE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcQwgP4hGsr7nk1m/s4vlvnc7nD+OkOO+BBjUP+5MVD4b4AS+Fm49P6Q2w7+qleA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAByDM8+NQCRvHzVET8+lXI8xHg2u5xOMTxyDM8+NQCRvHzVET8+lXI8xHg2u5xOMTxyDM8+NQCRvHzVET8+lXI8xHg2u5xOMTxyDM8+NQCRvHzVET8+lXI8xHg2u5xOMTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.40439183 -0.01770029 0.56966376]\n [ 0.40439183 -0.01770029 0.56966376]\n [ 0.40439183 -0.01770029 0.56966376]\n [ 0.40439183 -0.01770029 0.56966376]]",
60
+ "desired_goal": "[[ 0.62518984 -0.34819436 -0.84991306]\n [-0.44833145 1.2205647 -0.44446224]\n [ 1.6569829 0.20732471 -0.12976114]\n [ 0.739961 -1.525105 0.43864185]]",
61
+ "observation": "[[ 0.40439183 -0.01770029 0.56966376 0.01480609 -0.0027843 0.01082196]\n [ 0.40439183 -0.01770029 0.56966376 0.01480609 -0.0027843 0.01082196]\n [ 0.40439183 -0.01770029 0.56966376 0.01480609 -0.0027843 0.01082196]\n [ 0.40439183 -0.01770029 0.56966376 0.01480609 -0.0027843 0.01082196]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1DrqPN5K3ruq3tQ9ke1uPUBlDD236A09ql4RvVuFzr3QUNU9BOPOvXIRHbzeYBE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.0285925 -0.00678383 0.10394032]\n [ 0.05833203 0.03427625 0.03464576]\n [-0.03549067 -0.10084029 0.10415804]\n [-0.10101894 -0.00958668 0.14197108]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQdMSK6NR/7+UhpRSlIwBbJRLMowBdJRHQKPIHmAbyYp1fZQoaAZoCWgPQwhIwylz840MwJSGlFKUaBVLMmgWR0Cjx57zshPkdX2UKGgGaAloD0MIhLcHISD/AsCUhpRSlGgVSzJoFkdAo8cWJFb3XnV9lChoBmgJaA9DCEmERrBx3QDAlIaUUpRoFUsyaBZHQKPGwyE+Pil1fZQoaAZoCWgPQwhlx0YgXpcNwJSGlFKUaBVLMmgWR0CjyQHUDuBudX2UKGgGaAloD0MIS1zHuOJCB8CUhpRSlGgVSzJoFkdAo8iCasp5NXV9lChoBmgJaA9DCFuzlZf8LwbAlIaUUpRoFUsyaBZHQKPH+Zk078x1fZQoaAZoCWgPQwgHflTDfq8HwJSGlFKUaBVLMmgWR0Cjx6ZZjhDPdX2UKGgGaAloD0MIa2YtBaT9CcCUhpRSlGgVSzJoFkdAo8nkRzzVc3V9lChoBmgJaA9DCGyVYHE4MwPAlIaUUpRoFUsyaBZHQKPJZOzIFNd1fZQoaAZoCWgPQwgnMnOBy+MHwJSGlFKUaBVLMmgWR0CjyNwKSgXedX2UKGgGaAloD0MI95MxPsw+B8CUhpRSlGgVSzJoFkdAo8iI7kn1F3V9lChoBmgJaA9DCIZyol2FtAfAlIaUUpRoFUsyaBZHQKPKzXYlIEt1fZQoaAZoCWgPQwiZLO4/Mh0EwJSGlFKUaBVLMmgWR0Cjyk4W+GoKdX2UKGgGaAloD0MImFDB4QVR+L+UhpRSlGgVSzJoFkdAo8nFQAMlTnV9lChoBmgJaA9DCEbsE0AxMv6/lIaUUpRoFUsyaBZHQKPJcivgWJt1fZQoaAZoCWgPQwgmqUwxB2ELwJSGlFKUaBVLMmgWR0Cjy6sg2ZRbdX2UKGgGaAloD0MIK21xjc9kAsCUhpRSlGgVSzJoFkdAo8sryauwHXV9lChoBmgJaA9DCBr6J7hYEQ3AlIaUUpRoFUsyaBZHQKPKovoNd7h1fZQoaAZoCWgPQwgR5KCEmdYGwJSGlFKUaBVLMmgWR0Cjyk/Qa72+dX2UKGgGaAloD0MI3lflQuUfA8CUhpRSlGgVSzJoFkdAo8ySdYnv2HV9lChoBmgJaA9DCK6AQj19xAjAlIaUUpRoFUsyaBZHQKPMEwxFiKB1fZQoaAZoCWgPQwh40VeQZqwHwJSGlFKUaBVLMmgWR0Cjy4owmE5AdX2UKGgGaAloD0MIaOxLNh4MAcCUhpRSlGgVSzJoFkdAo8s29Jz1b3V9lChoBmgJaA9DCA8pBkg04QDAlIaUUpRoFUsyaBZHQKPNb2bobGZ1fZQoaAZoCWgPQwhDHVa45UMNwJSGlFKUaBVLMmgWR0CjzPAP3BYWdX2UKGgGaAloD0MIMGZLVkWYCsCUhpRSlGgVSzJoFkdAo8xnNPgvUXV9lChoBmgJaA9DCIqQup19JQLAlIaUUpRoFUsyaBZHQKPMFB7/n4h1fZQoaAZoCWgPQwhYO4pz1OERwJSGlFKUaBVLMmgWR0Cjzk+otL+QdX2UKGgGaAloD0MIGTvhJTg1CMCUhpRSlGgVSzJoFkdAo83QjyFwk3V9lChoBmgJaA9DCIxoO6buyv6/lIaUUpRoFUsyaBZHQKPNR6qKgqV1fZQoaAZoCWgPQwjZJ4BiZKkCwJSGlFKUaBVLMmgWR0CjzPR5TqB3dX2UKGgGaAloD0MISOLl6VwxBMCUhpRSlGgVSzJoFkdAo88t5WzWw3V9lChoBmgJaA9DCA8qcR3jCgHAlIaUUpRoFUsyaBZHQKPOrocrAgx1fZQoaAZoCWgPQwjYLQJjfYMFwJSGlFKUaBVLMmgWR0CjziXPRiPRdX2UKGgGaAloD0MIw2LUtfb+/L+UhpRSlGgVSzJoFkdAo83SlpGnXXV9lChoBmgJaA9DCDblCu9yEQXAlIaUUpRoFUsyaBZHQKPQKR5C4SZ1fZQoaAZoCWgPQwg0v5oDBLMBwJSGlFKUaBVLMmgWR0Cjz6m0/nnudX2UKGgGaAloD0MI88e0No3t+r+UhpRSlGgVSzJoFkdAo88g7tAs1HV9lChoBmgJaA9DCIHPDyOE5wDAlIaUUpRoFUsyaBZHQKPOzclgMMJ1fZQoaAZoCWgPQwiDp5Ar9awDwJSGlFKUaBVLMmgWR0Cj0QnJcPe6dX2UKGgGaAloD0MInil0XmMX/b+UhpRSlGgVSzJoFkdAo9CKeTV2BHV9lChoBmgJaA9DCAosgCkDR/e/lIaUUpRoFUsyaBZHQKPQAZpBX0Z1fZQoaAZoCWgPQwgWFXE6yZb/v5SGlFKUaBVLMmgWR0Cjz65vcafjdX2UKGgGaAloD0MIzoqoiT7f+7+UhpRSlGgVSzJoFkdAo9HkJjUd73V9lChoBmgJaA9DCPW+8bVn9gDAlIaUUpRoFUsyaBZHQKPRZO4XoDB1fZQoaAZoCWgPQwiq04GspzYDwJSGlFKUaBVLMmgWR0Cj0NxDTjNqdX2UKGgGaAloD0MIbVhTWRS2/b+UhpRSlGgVSzJoFkdAo9CJB/qgRXV9lChoBmgJaA9DCMnKL4MxwgfAlIaUUpRoFUsyaBZHQKPSyaz/p+t1fZQoaAZoCWgPQwg9R+S7lNoJwJSGlFKUaBVLMmgWR0Cj0kpKaodddX2UKGgGaAloD0MI0QfL2NAtAcCUhpRSlGgVSzJoFkdAo9HBdpqREHV9lChoBmgJaA9DCNZwkXu6uvu/lIaUUpRoFUsyaBZHQKPRbkHUtqZ1fZQoaAZoCWgPQwjgZYaNsj4OwJSGlFKUaBVLMmgWR0Cj06MUZeiSdX2UKGgGaAloD0MIfZHQlnPp/b+UhpRSlGgVSzJoFkdAo9Mjqjafz3V9lChoBmgJaA9DCHWSrS6nxP2/lIaUUpRoFUsyaBZHQKPSmx2St/51fZQoaAZoCWgPQwjECOHRxhEHwJSGlFKUaBVLMmgWR0Cj0kfgBLf2dX2UKGgGaAloD0MIY5eo3hoYCMCUhpRSlGgVSzJoFkdAo9SKCaqjrXV9lChoBmgJaA9DCMvXZfhPVwPAlIaUUpRoFUsyaBZHQKPUCrilzlt1fZQoaAZoCWgPQwioiqn0E479v5SGlFKUaBVLMmgWR0Cj04HZ00WNdX2UKGgGaAloD0MInKc65GZYA8CUhpRSlGgVSzJoFkdAo9MuqcVgyHV9lChoBmgJaA9DCP94r1qZ8P+/lIaUUpRoFUsyaBZHQKPVikoF3ZB1fZQoaAZoCWgPQwgTueAM/t4HwJSGlFKUaBVLMmgWR0Cj1Qu1OTJRdX2UKGgGaAloD0MIw7tcxHei/7+UhpRSlGgVSzJoFkdAo9SC+36RAHV9lChoBmgJaA9DCL06x4Ds1QDAlIaUUpRoFUsyaBZHQKPUL/hl18t1fZQoaAZoCWgPQwjEr1jDRe4BwJSGlFKUaBVLMmgWR0Cj1puVgQYldX2UKGgGaAloD0MIZRwj2SM0AMCUhpRSlGgVSzJoFkdAo9YcUEgW8HV9lChoBmgJaA9DCPcGX5hM9QnAlIaUUpRoFUsyaBZHQKPVk7dznzR1fZQoaAZoCWgPQwjlszwP7i4FwJSGlFKUaBVLMmgWR0Cj1UEzwc5sdX2UKGgGaAloD0MINe7Nb5hICMCUhpRSlGgVSzJoFkdAo9eAGlhw2nV9lChoBmgJaA9DCA70UNuGkQfAlIaUUpRoFUsyaBZHQKPXAONHYpV1fZQoaAZoCWgPQwhd/dgkP6L6v5SGlFKUaBVLMmgWR0Cj1ngP3BYWdX2UKGgGaAloD0MIrimQ2Vm097+UhpRSlGgVSzJoFkdAo9Yk5Ke05XV9lChoBmgJaA9DCJvIzAUubwLAlIaUUpRoFUsyaBZHQKPYZQCSzPd1fZQoaAZoCWgPQwg+BFWjV8MCwJSGlFKUaBVLMmgWR0Cj1+Xfyf+TdX2UKGgGaAloD0MIqdvZVx7k/r+UhpRSlGgVSzJoFkdAo9dc+mm+CnV9lChoBmgJaA9DCAmKH2PuegPAlIaUUpRoFUsyaBZHQKPXCb5uZTh1fZQoaAZoCWgPQwjo24KluoD5v5SGlFKUaBVLMmgWR0Cj2Uh0hePadX2UKGgGaAloD0MILv62J0isAMCUhpRSlGgVSzJoFkdAo9jJTS9dvHV9lChoBmgJaA9DCFt6NNWTuQHAlIaUUpRoFUsyaBZHQKPYQG6f8Mx1fZQoaAZoCWgPQwhtH/KWq/8CwJSGlFKUaBVLMmgWR0Cj1+2FN+LFdX2UKGgGaAloD0MIPDHrxVAuDMCUhpRSlGgVSzJoFkdAo9ouYQarFXV9lChoBmgJaA9DCBCVRszs8/+/lIaUUpRoFUsyaBZHQKPZrvUjLSx1fZQoaAZoCWgPQwj/zvboDff/v5SGlFKUaBVLMmgWR0Cj2SZL7GeddX2UKGgGaAloD0MIHv0v16KlDcCUhpRSlGgVSzJoFkdAo9jTcO9WZXV9lChoBmgJaA9DCOFiRQ2m4fy/lIaUUpRoFUsyaBZHQKPbEBq9Gqh1fZQoaAZoCWgPQwgJ/reSHfsMwJSGlFKUaBVLMmgWR0Cj2pC8OCoTdX2UKGgGaAloD0MIUOCdfHps/r+UhpRSlGgVSzJoFkdAo9oH5P/JeXV9lChoBmgJaA9DCBZtjnObcAbAlIaUUpRoFUsyaBZHQKPZtPl+3H91fZQoaAZoCWgPQwhau+1Cc50BwJSGlFKUaBVLMmgWR0Cj2+9hy8zzdX2UKGgGaAloD0MIo1cDlIba+L+UhpRSlGgVSzJoFkdAo9twB3iaRnV9lChoBmgJaA9DCCKMn8a9uQrAlIaUUpRoFUsyaBZHQKPa5y6tknV1fZQoaAZoCWgPQwgFNXwL64b8v5SGlFKUaBVLMmgWR0Cj2pQxWT5gdX2UKGgGaAloD0MINX12wHXF/r+UhpRSlGgVSzJoFkdAo9zPBeokzHV9lChoBmgJaA9DCDfiyW5mNPe/lIaUUpRoFUsyaBZHQKPcT5ULlV91fZQoaAZoCWgPQwgmrI2xE974v5SGlFKUaBVLMmgWR0Cj28a7mMfjdX2UKGgGaAloD0MIujDSi9o9CcCUhpRSlGgVSzJoFkdAo9tznied1HV9lChoBmgJaA9DCCI0go3rfwLAlIaUUpRoFUsyaBZHQKPdrQ3PzFx1fZQoaAZoCWgPQwhK628JwP8DwJSGlFKUaBVLMmgWR0Cj3S2dmQKbdX2UKGgGaAloD0MIoWXdPxaiB8CUhpRSlGgVSzJoFkdAo9ykxTKkmHV9lChoBmgJaA9DCIttUtFYOwPAlIaUUpRoFUsyaBZHQKPcUZRbbDd1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d5c0421af0dc1f0f66995360791df0b37f75b97e3697ba6651e636b23bf6906
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:995e4ba9b6735221abd37da2482be76a13d480ffd5421a8fbf02198e89e79f6c
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd4c5300430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd4c52faa20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674504964613011048, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcgzPPjUAkbx81RE/cgzPPjUAkbx81RE/cgzPPjUAkbx81RE/cgzPPjUAkbx81RE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcQwgP4hGsr7nk1m/s4vlvnc7nD+OkOO+BBjUP+5MVD4b4AS+Fm49P6Q2w7+qleA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAByDM8+NQCRvHzVET8+lXI8xHg2u5xOMTxyDM8+NQCRvHzVET8+lXI8xHg2u5xOMTxyDM8+NQCRvHzVET8+lXI8xHg2u5xOMTxyDM8+NQCRvHzVET8+lXI8xHg2u5xOMTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40439183 -0.01770029 0.56966376]\n [ 0.40439183 -0.01770029 0.56966376]\n [ 0.40439183 -0.01770029 0.56966376]\n [ 0.40439183 -0.01770029 0.56966376]]", "desired_goal": "[[ 0.62518984 -0.34819436 -0.84991306]\n [-0.44833145 1.2205647 -0.44446224]\n [ 1.6569829 0.20732471 -0.12976114]\n [ 0.739961 -1.525105 0.43864185]]", "observation": "[[ 0.40439183 -0.01770029 0.56966376 0.01480609 -0.0027843 0.01082196]\n [ 0.40439183 -0.01770029 0.56966376 0.01480609 -0.0027843 0.01082196]\n [ 0.40439183 -0.01770029 0.56966376 0.01480609 -0.0027843 0.01082196]\n [ 0.40439183 -0.01770029 0.56966376 0.01480609 -0.0027843 0.01082196]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1DrqPN5K3ruq3tQ9ke1uPUBlDD236A09ql4RvVuFzr3QUNU9BOPOvXIRHbzeYBE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0285925 -0.00678383 0.10394032]\n [ 0.05833203 0.03427625 0.03464576]\n [-0.03549067 -0.10084029 0.10415804]\n [-0.10101894 -0.00958668 0.14197108]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQdMSK6NR/7+UhpRSlIwBbJRLMowBdJRHQKPIHmAbyYp1fZQoaAZoCWgPQwhIwylz840MwJSGlFKUaBVLMmgWR0Cjx57zshPkdX2UKGgGaAloD0MIhLcHISD/AsCUhpRSlGgVSzJoFkdAo8cWJFb3XnV9lChoBmgJaA9DCEmERrBx3QDAlIaUUpRoFUsyaBZHQKPGwyE+Pil1fZQoaAZoCWgPQwhlx0YgXpcNwJSGlFKUaBVLMmgWR0CjyQHUDuBudX2UKGgGaAloD0MIS1zHuOJCB8CUhpRSlGgVSzJoFkdAo8iCasp5NXV9lChoBmgJaA9DCFuzlZf8LwbAlIaUUpRoFUsyaBZHQKPH+Zk078x1fZQoaAZoCWgPQwgHflTDfq8HwJSGlFKUaBVLMmgWR0Cjx6ZZjhDPdX2UKGgGaAloD0MIa2YtBaT9CcCUhpRSlGgVSzJoFkdAo8nkRzzVc3V9lChoBmgJaA9DCGyVYHE4MwPAlIaUUpRoFUsyaBZHQKPJZOzIFNd1fZQoaAZoCWgPQwgnMnOBy+MHwJSGlFKUaBVLMmgWR0CjyNwKSgXedX2UKGgGaAloD0MI95MxPsw+B8CUhpRSlGgVSzJoFkdAo8iI7kn1F3V9lChoBmgJaA9DCIZyol2FtAfAlIaUUpRoFUsyaBZHQKPKzXYlIEt1fZQoaAZoCWgPQwiZLO4/Mh0EwJSGlFKUaBVLMmgWR0Cjyk4W+GoKdX2UKGgGaAloD0MImFDB4QVR+L+UhpRSlGgVSzJoFkdAo8nFQAMlTnV9lChoBmgJaA9DCEbsE0AxMv6/lIaUUpRoFUsyaBZHQKPJcivgWJt1fZQoaAZoCWgPQwgmqUwxB2ELwJSGlFKUaBVLMmgWR0Cjy6sg2ZRbdX2UKGgGaAloD0MIK21xjc9kAsCUhpRSlGgVSzJoFkdAo8sryauwHXV9lChoBmgJaA9DCBr6J7hYEQ3AlIaUUpRoFUsyaBZHQKPKovoNd7h1fZQoaAZoCWgPQwgR5KCEmdYGwJSGlFKUaBVLMmgWR0Cjyk/Qa72+dX2UKGgGaAloD0MI3lflQuUfA8CUhpRSlGgVSzJoFkdAo8ySdYnv2HV9lChoBmgJaA9DCK6AQj19xAjAlIaUUpRoFUsyaBZHQKPMEwxFiKB1fZQoaAZoCWgPQwh40VeQZqwHwJSGlFKUaBVLMmgWR0Cjy4owmE5AdX2UKGgGaAloD0MIaOxLNh4MAcCUhpRSlGgVSzJoFkdAo8s29Jz1b3V9lChoBmgJaA9DCA8pBkg04QDAlIaUUpRoFUsyaBZHQKPNb2bobGZ1fZQoaAZoCWgPQwhDHVa45UMNwJSGlFKUaBVLMmgWR0CjzPAP3BYWdX2UKGgGaAloD0MIMGZLVkWYCsCUhpRSlGgVSzJoFkdAo8xnNPgvUXV9lChoBmgJaA9DCIqQup19JQLAlIaUUpRoFUsyaBZHQKPMFB7/n4h1fZQoaAZoCWgPQwhYO4pz1OERwJSGlFKUaBVLMmgWR0Cjzk+otL+QdX2UKGgGaAloD0MIGTvhJTg1CMCUhpRSlGgVSzJoFkdAo83QjyFwk3V9lChoBmgJaA9DCIxoO6buyv6/lIaUUpRoFUsyaBZHQKPNR6qKgqV1fZQoaAZoCWgPQwjZJ4BiZKkCwJSGlFKUaBVLMmgWR0CjzPR5TqB3dX2UKGgGaAloD0MISOLl6VwxBMCUhpRSlGgVSzJoFkdAo88t5WzWw3V9lChoBmgJaA9DCA8qcR3jCgHAlIaUUpRoFUsyaBZHQKPOrocrAgx1fZQoaAZoCWgPQwjYLQJjfYMFwJSGlFKUaBVLMmgWR0CjziXPRiPRdX2UKGgGaAloD0MIw2LUtfb+/L+UhpRSlGgVSzJoFkdAo83SlpGnXXV9lChoBmgJaA9DCDblCu9yEQXAlIaUUpRoFUsyaBZHQKPQKR5C4SZ1fZQoaAZoCWgPQwg0v5oDBLMBwJSGlFKUaBVLMmgWR0Cjz6m0/nnudX2UKGgGaAloD0MI88e0No3t+r+UhpRSlGgVSzJoFkdAo88g7tAs1HV9lChoBmgJaA9DCIHPDyOE5wDAlIaUUpRoFUsyaBZHQKPOzclgMMJ1fZQoaAZoCWgPQwiDp5Ar9awDwJSGlFKUaBVLMmgWR0Cj0QnJcPe6dX2UKGgGaAloD0MInil0XmMX/b+UhpRSlGgVSzJoFkdAo9CKeTV2BHV9lChoBmgJaA9DCAosgCkDR/e/lIaUUpRoFUsyaBZHQKPQAZpBX0Z1fZQoaAZoCWgPQwgWFXE6yZb/v5SGlFKUaBVLMmgWR0Cjz65vcafjdX2UKGgGaAloD0MIzoqoiT7f+7+UhpRSlGgVSzJoFkdAo9HkJjUd73V9lChoBmgJaA9DCPW+8bVn9gDAlIaUUpRoFUsyaBZHQKPRZO4XoDB1fZQoaAZoCWgPQwiq04GspzYDwJSGlFKUaBVLMmgWR0Cj0NxDTjNqdX2UKGgGaAloD0MIbVhTWRS2/b+UhpRSlGgVSzJoFkdAo9CJB/qgRXV9lChoBmgJaA9DCMnKL4MxwgfAlIaUUpRoFUsyaBZHQKPSyaz/p+t1fZQoaAZoCWgPQwg9R+S7lNoJwJSGlFKUaBVLMmgWR0Cj0kpKaodddX2UKGgGaAloD0MI0QfL2NAtAcCUhpRSlGgVSzJoFkdAo9HBdpqREHV9lChoBmgJaA9DCNZwkXu6uvu/lIaUUpRoFUsyaBZHQKPRbkHUtqZ1fZQoaAZoCWgPQwjgZYaNsj4OwJSGlFKUaBVLMmgWR0Cj06MUZeiSdX2UKGgGaAloD0MIfZHQlnPp/b+UhpRSlGgVSzJoFkdAo9Mjqjafz3V9lChoBmgJaA9DCHWSrS6nxP2/lIaUUpRoFUsyaBZHQKPSmx2St/51fZQoaAZoCWgPQwjECOHRxhEHwJSGlFKUaBVLMmgWR0Cj0kfgBLf2dX2UKGgGaAloD0MIY5eo3hoYCMCUhpRSlGgVSzJoFkdAo9SKCaqjrXV9lChoBmgJaA9DCMvXZfhPVwPAlIaUUpRoFUsyaBZHQKPUCrilzlt1fZQoaAZoCWgPQwioiqn0E479v5SGlFKUaBVLMmgWR0Cj04HZ00WNdX2UKGgGaAloD0MInKc65GZYA8CUhpRSlGgVSzJoFkdAo9MuqcVgyHV9lChoBmgJaA9DCP94r1qZ8P+/lIaUUpRoFUsyaBZHQKPVikoF3ZB1fZQoaAZoCWgPQwgTueAM/t4HwJSGlFKUaBVLMmgWR0Cj1Qu1OTJRdX2UKGgGaAloD0MIw7tcxHei/7+UhpRSlGgVSzJoFkdAo9SC+36RAHV9lChoBmgJaA9DCL06x4Ds1QDAlIaUUpRoFUsyaBZHQKPUL/hl18t1fZQoaAZoCWgPQwjEr1jDRe4BwJSGlFKUaBVLMmgWR0Cj1puVgQYldX2UKGgGaAloD0MIZRwj2SM0AMCUhpRSlGgVSzJoFkdAo9YcUEgW8HV9lChoBmgJaA9DCPcGX5hM9QnAlIaUUpRoFUsyaBZHQKPVk7dznzR1fZQoaAZoCWgPQwjlszwP7i4FwJSGlFKUaBVLMmgWR0Cj1UEzwc5sdX2UKGgGaAloD0MINe7Nb5hICMCUhpRSlGgVSzJoFkdAo9eAGlhw2nV9lChoBmgJaA9DCA70UNuGkQfAlIaUUpRoFUsyaBZHQKPXAONHYpV1fZQoaAZoCWgPQwhd/dgkP6L6v5SGlFKUaBVLMmgWR0Cj1ngP3BYWdX2UKGgGaAloD0MIrimQ2Vm097+UhpRSlGgVSzJoFkdAo9Yk5Ke05XV9lChoBmgJaA9DCJvIzAUubwLAlIaUUpRoFUsyaBZHQKPYZQCSzPd1fZQoaAZoCWgPQwg+BFWjV8MCwJSGlFKUaBVLMmgWR0Cj1+Xfyf+TdX2UKGgGaAloD0MIqdvZVx7k/r+UhpRSlGgVSzJoFkdAo9dc+mm+CnV9lChoBmgJaA9DCAmKH2PuegPAlIaUUpRoFUsyaBZHQKPXCb5uZTh1fZQoaAZoCWgPQwjo24KluoD5v5SGlFKUaBVLMmgWR0Cj2Uh0hePadX2UKGgGaAloD0MILv62J0isAMCUhpRSlGgVSzJoFkdAo9jJTS9dvHV9lChoBmgJaA9DCFt6NNWTuQHAlIaUUpRoFUsyaBZHQKPYQG6f8Mx1fZQoaAZoCWgPQwhtH/KWq/8CwJSGlFKUaBVLMmgWR0Cj1+2FN+LFdX2UKGgGaAloD0MIPDHrxVAuDMCUhpRSlGgVSzJoFkdAo9ouYQarFXV9lChoBmgJaA9DCBCVRszs8/+/lIaUUpRoFUsyaBZHQKPZrvUjLSx1fZQoaAZoCWgPQwj/zvboDff/v5SGlFKUaBVLMmgWR0Cj2SZL7GeddX2UKGgGaAloD0MIHv0v16KlDcCUhpRSlGgVSzJoFkdAo9jTcO9WZXV9lChoBmgJaA9DCOFiRQ2m4fy/lIaUUpRoFUsyaBZHQKPbEBq9Gqh1fZQoaAZoCWgPQwgJ/reSHfsMwJSGlFKUaBVLMmgWR0Cj2pC8OCoTdX2UKGgGaAloD0MIUOCdfHps/r+UhpRSlGgVSzJoFkdAo9oH5P/JeXV9lChoBmgJaA9DCBZtjnObcAbAlIaUUpRoFUsyaBZHQKPZtPl+3H91fZQoaAZoCWgPQwhau+1Cc50BwJSGlFKUaBVLMmgWR0Cj2+9hy8zzdX2UKGgGaAloD0MIo1cDlIba+L+UhpRSlGgVSzJoFkdAo9twB3iaRnV9lChoBmgJaA9DCCKMn8a9uQrAlIaUUpRoFUsyaBZHQKPa5y6tknV1fZQoaAZoCWgPQwgFNXwL64b8v5SGlFKUaBVLMmgWR0Cj2pQxWT5gdX2UKGgGaAloD0MINX12wHXF/r+UhpRSlGgVSzJoFkdAo9zPBeokzHV9lChoBmgJaA9DCDfiyW5mNPe/lIaUUpRoFUsyaBZHQKPcT5ULlV91fZQoaAZoCWgPQwgmrI2xE974v5SGlFKUaBVLMmgWR0Cj28a7mMfjdX2UKGgGaAloD0MIujDSi9o9CcCUhpRSlGgVSzJoFkdAo9tznied1HV9lChoBmgJaA9DCCI0go3rfwLAlIaUUpRoFUsyaBZHQKPdrQ3PzFx1fZQoaAZoCWgPQwhK628JwP8DwJSGlFKUaBVLMmgWR0Cj3S2dmQKbdX2UKGgGaAloD0MIoWXdPxaiB8CUhpRSlGgVSzJoFkdAo9ykxTKkmHV9lChoBmgJaA9DCIttUtFYOwPAlIaUUpRoFUsyaBZHQKPcUZRbbDd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (815 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.5908334786770864, "std_reward": 0.8573413501938271, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T21:17:38.953341"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e549baa2bd4a370ce35138c0b5c61a5e27f7fe86c16f78559ebbde3ecdce8bcd
3
+ size 3056