--- base_model: - Jebadiah/Aria-ruby-v3 tags: - merge - mergekit - lazymergekit - Jebadiah/Aria-coder-7b --- # Aria-rp-coder-7b ## 🧩 Configuration ```yaml name: Aria-rp-7b merge_method: sce parameters: select_topk: 0.8666 normalize: true dtype: float32 out_dtype: bfloat16 base_model: Jebadiah/Aria-ruby-v3 tokenizer: source: union special_tokens: keep_all priority: none add_padding_token: true force_fast_tokenizer: true # Can help with compatibility resolve_conflicts: append_ids # Append IDs to conflicting tokens to make them unique models: - model: xingyaoww/CodeActAgent-Mistral-7b-v0.1 - model: Badgids/Gonzo-Code-7B - model: Jebadiah/Aria-ruby-v3 - model: flammenai/flammen31-mistral-7B - model: fhai50032/SamChat - model: beowolx/CodeNinja-1.0-OpenChat-7B - model: AI-B/UTENA-7B-NSFW-V2 - model: MaziyarPanahi/NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1 - model: DavidAU/D_AU-Multi-Verse-RP-Yarn-Mistral-7b-128k-DPO - model: Undi95/Mistral-RP-0.1-7B - model: FallenMerick/Iced-Lemon-Cookie-7B ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Jebadiah/Aria-rp-coder-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```