--- license: llama3.1 language: - en inference: false fine-tuning: false tags: - nvidia - llama3.1 datasets: - nvidia/HelpSteer2 base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF pipeline_tag: text-generation library_name: transformers --- # huihui-ai/Llama-3.1-Nemotron-70B-Instruct-HF-abliterated This is an uncensored version of [nvidia/Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it). Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models. ## Usage You can use this model in your applications by loading it with Hugging Face's `transformers` library, If the desired result is not achieved, you can clear the conversation and try again: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "huihui-ai/Llama-3.1-Nemotron-70B-Instruct-HF-abliterated" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clean": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Build the chat template tokenized_message = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True ) # Generate a response from the model response_token_ids = model.generate( tokenized_message['input_ids'].cuda(), attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=4096, pad_token_id = tokenizer.eos_token_id ) # Extract model output, removing special tokens generated_tokens = response_token_ids[:, len(tokenized_message['input_ids'][0]):] generated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": generated_text}) # Print the model's response print(f"Response: {generated_text}") ```