File size: 2,141 Bytes
1bbad4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
language:
- en
license: mit
base_model: distil-whisper/distil-large-v3
tags:
- generated_from_trainer
datasets:
- Jenalea/www_call_center_en_merged
metrics:
- wer
model-index:
- name: Distill Whisper Call Center
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: www_call_center_eng_merged
      type: Jenalea/www_call_center_en_merged
      args: 'config: en, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 15.436723341258803
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Distill Whisper Call Center

This model is a fine-tuned version of [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3) on the www_call_center_eng_merged dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6325
- Wer: 15.4367

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.1595        | 3.0628  | 1000 | 0.3259          | 14.9904 |
| 0.0579        | 6.1256  | 2000 | 0.4136          | 15.3033 |
| 0.0121        | 9.1884  | 3000 | 0.5519          | 15.2943 |
| 0.0021        | 12.2511 | 4000 | 0.6325          | 15.4367 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.6.0+cu124
- Datasets 3.4.0
- Tokenizers 0.20.3