File size: 896 Bytes
253f1f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
from typing import Any, Dict
from transformers import ViltProcessor, ViltForQuestionAnswering
class EndpointHandler:
def __init__(self, path=""):
# load model and processor from path
self.processor = AutoTokenizer.from_pretrained(path)
self.model = ViltForQuestionAnswering.from_pretrained(path)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
# process input
image = data.pop("image", data)
text = data.pop("text", data)
parameters = data.pop("parameters", None)
# preprocess
encoding = processor(image, text, return_tensors="pt")
outputs = model(**encoding)
# postprocess the prediction
logits = outputs.logits
idx = logits.argmax(-1).item()
return [{"answer": model.config.id2label[idx]}] |