File size: 4,013 Bytes
c7767b9
f6cf98a
 
c7767b9
 
 
 
 
 
 
 
 
 
 
 
6acb7d5
c7767b9
f6cf98a
c7767b9
 
 
6acb7d5
c7767b9
6acb7d5
08fb8b8
 
 
 
 
 
 
 
 
6acb7d5
08fb8b8
6acb7d5
08fb8b8
6acb7d5
 
08fb8b8
6acb7d5
08fb8b8
6acb7d5
 
08fb8b8
6acb7d5
08fb8b8
6acb7d5
 
08fb8b8
6acb7d5
08fb8b8
6acb7d5
 
08fb8b8
6acb7d5
08fb8b8
6acb7d5
 
08fb8b8
6acb7d5
08fb8b8
6acb7d5
c7767b9
 
 
 
 
 
 
f6cf98a
c7767b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-base-uncased-rte
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: GLUE RTE
      type: glue
      args: rte
    metrics:
    - type: accuracy
      value: 0.6895306859205776
      name: Accuracy
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: glue
      type: glue
      config: rte
      split: validation
    metrics:
    - type: accuracy
      value: 0.6823104693140795
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTc4OTUzYmQ0NWRkMjdmYjI3ZDhmNWU5MTQ1YTM4ZTQzOWM5MTJjYzlmMjM3ZTE2Y2ZhMGJlNTI0OTJhYjNmMCIsInZlcnNpb24iOjF9.siPkmQhZKOZ1k_SyS1xIMavpK_CQ8tHTm39McCIEjiF7G1x62lbuKfrZsLoKoPf9XpNJqXoaXIRPCpHBKlfwCA
    - type: precision
      value: 0.7047619047619048
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzdmMjk0ZjRkNzM4ZWE1ZGUyOWUxZTFjNmEyNTRmNjZmMDUxOTJlZmUxNjUzMWFhZTYzZTM1ZGNkMDg1YTMzYyIsInZlcnNpb24iOjF9.Cm2kMSTsWVPU9mBv8xAyvo7msTHdG3SECIYZ4kQ5RpN4NV3WE1k0EqmcGzAedwYNfSEg1qXL-qWDKOeoXDAnCw
    - type: recall
      value: 0.5648854961832062
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjc1NTMzYWI5OGRjODdhYmJjZDQ3ODdiMWE3ODYzZjNhZDg1MGIyNjA1YzQwNzcwYTQzNjJkNGVjNmNjMWJmNSIsInZlcnNpb24iOjF9.MwRAu1AKhCt__2vBjhvEqU0gvXaJ5EMOOotKmwGXsuF3eGJEEDDuiWBgu9y291aqndTTwWvuH9CNQjGKLCoNCw
    - type: auc
      value: 0.7394646031580048
      name: AUC
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGQwMWVhZjlhNjhhZDRhNGYwNWUyOTZjMTgwMDQ5ZWM3MDcxNDc5OGJiNDE5NTNhOTU0MDMwYTdkYjcxNzFiZiIsInZlcnNpb24iOjF9.ZLyE_ZDWyVAr_GL_3lSqBmuIip7C13oj5kT1lI9JQOidt-IXsRHYUmJt_f7HWUNU1-FBD5lzHYcstF6WQ0VrAw
    - type: f1
      value: 0.6271186440677967
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmU0YjI4Y2MyMzU5ZTYzMmE0YzhjOTgwM2UwYTNhZDFmZWE3NTdhODMzYmU1ZWUxYTc2Yjk3Nzg3MjAyOThiOSIsInZlcnNpb24iOjF9.GJhnKNSHN5Sv9W3gl8fgPAAbM5EtMlhOHoOFcj_O65FLtcTi_ANpyv7gi41fPbMjS2TG4fgdVHQ_UZg7M6W2Cw
    - type: loss
      value: 0.7001310586929321
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjMwMTY5OGVkMzVhMzdjMmY1YmIzYTViOTRlNzcxMTI4NWNiOTQ5ZjMwMjRlODE4ZWUwMGVhZjhiMmIzM2ViOSIsInZlcnNpb24iOjF9.IsJhfeeqnVZFn10sOkCW7vAzfw1WQMwR8b99B3-hct_lrI1xodt5ySGltDvx2Q8ufD6hzfQ7YaDeHytDmeeFBw
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-rte

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6972
- Accuracy: 0.6895

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 156  | 0.6537          | 0.6318   |
| No log        | 2.0   | 312  | 0.6383          | 0.6534   |
| No log        | 3.0   | 468  | 0.6972          | 0.6895   |


### Framework versions

- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1