--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6895306859205776 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: rte split: validation metrics: - name: Accuracy type: accuracy value: 0.6823104693140795 verified: true - name: Precision type: precision value: 0.7047619047619048 verified: true - name: Recall type: recall value: 0.5648854961832062 verified: true - name: AUC type: auc value: 0.7394646031580048 verified: true - name: F1 type: f1 value: 0.6271186440677967 verified: true - name: loss type: loss value: 0.7001310586929321 verified: true --- # bert-base-uncased-rte This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6972 - Accuracy: 0.6895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.6537 | 0.6318 | | No log | 2.0 | 312 | 0.6383 | 0.6534 | | No log | 3.0 | 468 | 0.6972 | 0.6895 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1