bge-m3-onnx-o4 / convert.py
JeremyHibiki's picture
Upload convert.py
76d04a2 verified
from __future__ import annotations
import os
from collections import OrderedDict
from pathlib import Path
from typing import Dict
import torch
from huggingface_hub import snapshot_download
from optimum.exporters.onnx import export
from optimum.exporters.onnx.model_configs import XLMRobertaOnnxConfig
from optimum.onnxruntime import ORTModelForCustomTasks, ORTOptimizer
from optimum.onnxruntime.configuration import AutoOptimizationConfig
from torch import Tensor
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel, XLMRobertaConfig
class BGEM3InferenceModel(PreTrainedModel):
config_class = XLMRobertaConfig
base_model_prefix = "BGEM3InferenceModel"
model_tags = ["BAAI/bge-m3"]
def __init__(self, model_name: str = "BAAI/bge-m3"):
super().__init__(PretrainedConfig())
model_name = snapshot_download(repo_id=model_name)
self.config = AutoConfig.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.sparse_linear = torch.nn.Linear(
in_features=self.model.config.hidden_size,
out_features=1,
)
sparse_state_dict = torch.load(os.path.join(model_name, "sparse_linear.pt"), map_location="cpu")
self.sparse_linear.load_state_dict(sparse_state_dict)
self.colbert_linear = torch.nn.Linear(
in_features=self.model.config.hidden_size,
out_features=self.model.config.hidden_size,
)
colbert_state_dict = torch.load(os.path.join(model_name, "colbert_linear.pt"), map_location="cpu")
self.colbert_linear.load_state_dict(colbert_state_dict)
def dense_embedding(self, last_hidden_state: Tensor) -> Tensor:
return last_hidden_state[:, 0]
def sparse_embedding(self, last_hidden_state: Tensor) -> Tensor:
with torch.no_grad():
return torch.relu(self.sparse_linear(last_hidden_state))
def colbert_embedding(self, last_hidden_state: Tensor, attention_mask: Tensor) -> Tensor:
with torch.no_grad():
colbert_vecs = self.colbert_linear(last_hidden_state[:, 1:])
return colbert_vecs * attention_mask[:, 1:][:, :, None].float()
def forward(self, input_ids: Tensor, attention_mask: Tensor) -> Dict[str, Tensor]:
with torch.no_grad():
last_hidden_state = self.model(
input_ids=input_ids, attention_mask=attention_mask, return_dict=True
).last_hidden_state
output = {}
dense_vecs = self.dense_embedding(last_hidden_state)
output["dense_vecs"] = torch.nn.functional.normalize(dense_vecs, dim=-1)
sparse_vecs = self.sparse_embedding(last_hidden_state)
output["sparse_vecs"] = sparse_vecs
colbert_vecs = self.colbert_embedding(last_hidden_state, attention_mask)
output["colbert_vecs"] = torch.nn.functional.normalize(colbert_vecs, dim=-1)
return output
class BGEM3OnnxConfig(XLMRobertaOnnxConfig):
@property
def outputs(self) -> Dict[str, Dict[int, str]]:
return OrderedDict(
{
"dense_vecs": {0: "batch_size", 1: "embedding"},
"sparse_vecs": {0: "batch_size", 1: "token", 2: "weight"},
"colbert_vecs": {0: "batch_size", 1: "token", 2: "embedding"},
}
)
def main(output: str, device: str = "cuda", optimize: str = "O4"):
# 加载模型
model = BGEM3InferenceModel()
model.save_pretrained(output)
# 配置
bgem3_onnx_config = BGEM3OnnxConfig(model.config)
# 导出
export(
model,
output=Path(output) / "model.onnx",
config=bgem3_onnx_config,
opset=bgem3_onnx_config.DEFAULT_ONNX_OPSET,
device=device,
)
optimizer = ORTOptimizer.from_pretrained(output, file_names=["model.onnx"])
optimization_config = AutoOptimizationConfig.with_optimization_level(optimization_level=optimize)
optimization_config.disable_shape_inference = True
if optimize == "O4":
optimization_config.optimize_for_gpu = True
optimization_config.fp16 = True
optimization_config.optimization_level = 99
optimizer.optimize(save_dir=output, optimization_config=optimization_config, file_suffix="")
ORTModelForCustomTasks.from_pretrained(
output,
provider="CUDAExecutionProvider" if device == "cuda" else "CPUExecutionProvider",
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--output", type=str)
parser.add_argument("--device", type=str, choices=["cuda", "cpu"], default="cuda")
parser.add_argument("--optimize", type=str, choices=["O1", "O2", "O3", "O4"], default="O4")
parser.add_argument("--push_to_hub", action="store_true", default=False)
parser.add_argument("--push_to_hub_repo_id", type=str, default="JeremyHibiki/bge-m3-onnx")
args = parser.parse_args()
main(args.output, args.device, args.optimize)