--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Finetune - IERG4320 Project results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: en split: None args: en metrics: - name: Wer type: wer value: 18.293375256561422 --- # Whisper Small Finetune - IERG4320 Project This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.5674 - Wer Ortho: 22.0544 - Wer: 18.2934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:| | 0.094 | 2.5974 | 200 | 0.4300 | 20.8774 | 17.1318 | | 0.0105 | 5.1948 | 400 | 0.5000 | 21.6635 | 17.7999 | | 0.0024 | 7.7922 | 600 | 0.5250 | 21.7294 | 17.9615 | | 0.0015 | 10.3896 | 800 | 0.5528 | 23.3630 | 19.5205 | | 0.0011 | 12.9870 | 1000 | 0.5674 | 22.0544 | 18.2934 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.4