YanJiangJerry commited on
Commit
f85b79f
·
1 Parent(s): fe6d5ff

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: xlnet-large-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - f1
8
+ - recall
9
+ - precision
10
+ model-index:
11
+ - name: task2_xlnet-large-cased_3_4_2e-05_0.01
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # task2_xlnet-large-cased_3_4_2e-05_0.01
19
+
20
+ This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.9482
23
+ - F1: 0.7790
24
+ - Recall: 0.7790
25
+ - Precision: 0.7790
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 2e-05
45
+ - train_batch_size: 4
46
+ - eval_batch_size: 4
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 3
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Precision |
55
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:|
56
+ | 0.8074 | 1.0 | 745 | 0.7084 | 0.7574 | 0.7574 | 0.7574 |
57
+ | 0.7665 | 2.0 | 1490 | 0.7881 | 0.7628 | 0.7628 | 0.7628 |
58
+ | 0.6739 | 3.0 | 2235 | 0.9482 | 0.7790 | 0.7790 | 0.7790 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.31.0
64
+ - Pytorch 2.0.1+cu118
65
+ - Datasets 2.14.3
66
+ - Tokenizers 0.13.3