update model card README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,7 @@ license: apache-2.0
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
-
-
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
model-index:
|
@@ -13,15 +13,15 @@ model-index:
|
|
13 |
name: Image Classification
|
14 |
type: image-classification
|
15 |
dataset:
|
16 |
-
name:
|
17 |
-
type:
|
18 |
config: default
|
19 |
-
split: train[:
|
20 |
args: default
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -29,10 +29,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
29 |
|
30 |
# my_awesome_food_model
|
31 |
|
32 |
-
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 1.
|
35 |
-
- Accuracy: 0
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -66,9 +66,9 @@ The following hyperparameters were used during training:
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
+
- imagefolder
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
model-index:
|
|
|
13 |
name: Image Classification
|
14 |
type: image-classification
|
15 |
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
config: default
|
19 |
+
split: train[:500]
|
20 |
args: default
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 1.0
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
29 |
|
30 |
# my_awesome_food_model
|
31 |
|
32 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.4487
|
35 |
+
- Accuracy: 1.0
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| No log | 0.96 | 6 | 2.0041 | 0.89 |
|
70 |
+
| 2.1814 | 1.92 | 12 | 1.5684 | 0.98 |
|
71 |
+
| 2.1814 | 2.88 | 18 | 1.4487 | 1.0 |
|
72 |
|
73 |
|
74 |
### Framework versions
|