ppo-LunarLander-v2 / config.json
Jjateen's picture
Model Committed
b0ef501
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7deb06488f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7deb06489000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7deb06489090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7deb06489120>", "_build": "<function ActorCriticPolicy._build at 0x7deb064891b0>", "forward": "<function ActorCriticPolicy.forward at 0x7deb06489240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7deb064892d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7deb06489360>", "_predict": "<function ActorCriticPolicy._predict at 0x7deb064893f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7deb06489480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7deb06489510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7deb064895a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7deb06c1c700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702557902251438051, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYxZL5BGsi8H70RvC1oaLpN9C0+Txs0OwAAgD8AAIA/4qWCvqzVJD++QhE+HppbvnXTdTuVQ1e7AAAAAAAAAACahIu8w4V5uiJC8zaeFa0xVKwUu1FQD7YAAIA/AACAP7Mfaj0fgZS7m7FlvIo8ODx589681tEhPQAAgD8AAIA/gMzuvf/crD8yNPu+TdidvribI75QnXa+AAAAAAAAAACNJ709seQpPjbINL6Uhoe+Jy/OvFBomb0AAAAAAAAAAIZoPz5lwoE/9wmUPTOlmb6Pc0I+ylI7vQAAAAAAAAAAIPRJPnQ6nj9CVaw9qpSzvuF5Sz67IPI8AAAAAAAAAABNgD2+PzOfPjqAHz59Dki+w+GYPFOCF7wAAAAAAAAAAMDT8L3D/wE7QjeQPcd3I747Yz69Df0APAAAgD8AAAAA5rOpPSYDeD8PIxS9Z5qHvhC7Fj2tfIq9AAAAAAAAAADaNX8+Dgg0P5M/Fr73I4y+MkKBPHZfXbwAAAAAAAAAAI0i9j14Yfg+MzjRvY3xKb5zgFi9YwONvAAAAAAAAAAA5ktCvZxurj7TVuQ9wn3xvZ+w6jy+jyG9AAAAAAAAAADNfcM9mqmgP8jfzT5DjZ2+5pSOPWvhXT4AAAAAAAAAAHOZw710/wg/Phklvfeih74pkQi9coaevAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5J5XuE25yMAWyUTT8BjAF0lEdAkj30CmuTzXV9lChoBkdAbYHPSDyvtGgHTVYBaAhHQJI/PgtOEdx1fZQoaAZHQGoAEnb7CSBoB01QAWgIR0CSP24CIUJwdX2UKGgGR0BtFoS13MY/aAdNSAFoCEdAkj+IpDu0C3V9lChoBkdAcQxNQTEiuGgHTUEBaAhHQJJBXleWv8t1fZQoaAZHQHH60MCtA9poB01YAWgIR0CSQaSvC/GmdX2UKGgGR0Bwopo8IRh+aAdNSgFoCEdAkkIyqQzUJHV9lChoBkdAbpJJ/XoTwmgHTT8BaAhHQJJDojs2NvR1fZQoaAZHQG/gc7IT4+NoB013AWgIR0CSRKLgGbCrdX2UKGgGR0BvDsoWpIczaAdNtgFoCEdAkkV8lTm4iHV9lChoBkdAcVqTBInSfGgHTY8BaAhHQJJX+obXHzZ1fZQoaAZHQGvFUnw5NoJoB01JAWgIR0CSWBgwoLG8dX2UKGgGR0BsfzSiM5wPaAdNNgFoCEdAklkRk/bCanV9lChoBkdATIO/1xsEaGgHTSMBaAhHQJJZIvugHu91fZQoaAZHQG+84zi0fHRoB02CAWgIR0CSWTZ2pyZKdX2UKGgGR0Bv9+oaUA1faAdNQQFoCEdAkll/kFOfunV9lChoBkdAbdM0VrRBvGgHTTYBaAhHQJJa8zHjp9t1fZQoaAZHQGzr1Jtix3VoB01oAWgIR0CSXNsBQvYfdX2UKGgGR0BxzBcs189faAdNPgFoCEdAkl2Yb0e2eHV9lChoBkdAcDZUhmoR7WgHTZ4BaAhHQJJefTBqKxd1fZQoaAZHQHIoZxvNu+BoB01YAWgIR0CSXxMYMvytdX2UKGgGR0Bv7vxz7uUmaAdNWwFoCEdAkmC8rZrYXnV9lChoBkdAcIiiu+yquWgHTW8BaAhHQJJik6RyOrB1fZQoaAZHQG/Pz4UN8VpoB01dAWgIR0CSYwfXPJJYdX2UKGgGR0BwfAN3GGVSaAdN2QFoCEdAkmNduYQarHV9lChoBkdAcLTtknTiKmgHTSIBaAhHQJJkGAOJ+Dx1fZQoaAZHQHAvPCqIacZoB01bAWgIR0CSZYlDneSCdX2UKGgGR0BtgjMLWqcWaAdNOQFoCEdAkmW8AJb+tXV9lChoBkdAbq5ewcHW0GgHTVMBaAhHQJJmXRnezld1fZQoaAZHQHIusLv1DjRoB01aAWgIR0CSZsSW7e2vdX2UKGgGR0BvA+JP69CeaAdNLAFoCEdAkmc8zqKP4nV9lChoBkdAb++xGDtgKGgHTV0BaAhHQJJsWtOmBOJ1fZQoaAZHQG2U0fHPu5VoB01TAWgIR0CSbQC1JDmbdX2UKGgGR0BXfKtLcsUZaAdN6ANoCEdAkm6n4TK1X3V9lChoBkdAcFjtzCDVY2gHTU4BaAhHQJJxEVN5+ph1fZQoaAZHQHCNNmg8KXxoB02BAWgIR0CScWESM98rdX2UKGgGR0BwPuYE4ecQaAdNJAFoCEdAknGg4bS7XnV9lChoBkdAcT/ttQ9A5mgHTWgCaAhHQJJylnK4hEB1fZQoaAZHQHEoHK8tf5VoB01JAWgIR0CScuwV0tAcdX2UKGgGR0AtcDBdld1MaAdL+2gIR0CScwqwhW5pdX2UKGgGR0Bvuy9du5z6aAdNPwFoCEdAknOPcrRSg3V9lChoBkdAcBS2HLzPKWgHTW0BaAhHQJJ0sT101ZV1fZQoaAZHQG1MZAQg9vFoB01kAWgIR0CSdpBgeA/cdX2UKGgGR0Bub3AM2FWXaAdNdwFoCEdAkngHQQcxTXV9lChoBkdAcu5+AmReTmgHTSEBaAhHQJJ5Cys0YTF1fZQoaAZHQHJRARXfZVZoB01RAWgIR0CSeoWEK3NLdX2UKGgGR0BD8ZqubI91aAdL92gIR0CSeueV9nbqdX2UKGgGR0BuUkbBGhEjaAdNPgFoCEdAknttszl90HV9lChoBkdAcJ+ErGza9WgHTR8CaAhHQJJ9N4A0bcZ1fZQoaAZHQGtkyRbKRuFoB00yAWgIR0CSfY4lyBCldX2UKGgGR0Bd2TByjpLVaAdN0AJoCEdAkn3RCY1HfHV9lChoBkdAcL++F10T12gHTTIBaAhHQJJ/fWVeKKp1fZQoaAZHQG6wkwnH/95oB01wAWgIR0CSf5z6JqIrdX2UKGgGR0BuAg4ffXPJaAdNXAFoCEdAkoAlE3KjjHV9lChoBkdAcJLdweeWfWgHTV8BaAhHQJKAh/J/5L11fZQoaAZHQG/9kgfU4JhoB01/AWgIR0CSlGRKHwgDdX2UKGgGR0BwJWBNEgGKaAdNYAFoCEdAkpUuCwr1/XV9lChoBkdAcVhH+IdlumgHTTcBaAhHQJKWNqSHM2Z1fZQoaAZHQHHMs4tHxz9oB01wAWgIR0CSmACswL3LdX2UKGgGR0Bs97k0aZQYaAdNQgFoCEdAkpmcfRu0kXV9lChoBkdAcQ5j/uLJjmgHTU4BaAhHQJKZybONYKZ1fZQoaAZHQG04oi1RceNoB01CAWgIR0CSml4xk/bCdX2UKGgGR0Bxiy5hBqsVaAdNIwJoCEdAkpqVy3kPtnV9lChoBkdAcIH1SOzY3GgHTSoBaAhHQJKbWCvovBd1fZQoaAZHQGy2TySV4X5oB00kAWgIR0CSm6lLvkR0dX2UKGgGR0BxhMZLqUu+aAdNWQFoCEdAkp22UfPom3V9lChoBkdAcGzczZYgaGgHTTMBaAhHQJKeP3ai9Ix1fZQoaAZHQHCwu0G/vfFoB01CAWgIR0CSns7mMfihdX2UKGgGR0Buzwcm0E5iaAdNVAFoCEdAkqBrzK9wm3V9lChoBkdAbRDWS2Yv4GgHTWgBaAhHQJKh2ajN6gN1fZQoaAZHQFm7BFNL129oB03oA2gIR0CSonRrJr+HdX2UKGgGR0Bt4locrAgxaAdNOQFoCEdAkqL0uYhManV9lChoBkdAcH+TqSowVWgHTUkBaAhHQJKkHxqfvnd1fZQoaAZHQG410lZ5iVloB01LAWgIR0CSpj7EYO2BdX2UKGgGR0BxQfExZdOZaAdNaQFoCEdAkqZAVO9FnnV9lChoBkdAcB/ovSMLnmgHTS0BaAhHQJKmtRfnfVJ1fZQoaAZHQHIMhK6FueloB01DAWgIR0CSpw8Nx2jgdX2UKGgGR0Bwu/fk3juKaAdNYQFoCEdAkqgpPAO8TXV9lChoBkdAcKWfMfRu0mgHTWMBaAhHQJKovapPykN1fZQoaAZHQHIIkvwmVqxoB01nAWgIR0CSqXDFId2gdX2UKGgGR0Bxww5Lh73PaAdNPgFoCEdAkqna8xsVL3V9lChoBkdAbIBKGL1mJ2gHTYABaAhHQJKszgdfb9J1fZQoaAZHQHDUjodMj/xoB027AWgIR0CSrM4z7/GVdX2UKGgGR0BwWHpPhybQaAdNYQFoCEdAkq1hUrCm/HV9lChoBkdAcaSE7nxJ/WgHTSEBaAhHQJKtZvOyE+R1fZQoaAZHQHIrQNb1RLtoB00aAWgIR0CSrlfzSThYdX2UKGgGR0BST+zD4xk/aAdNIgFoCEdAkrF9vGZNPHV9lChoBkdAcFiR77bcoGgHTUEBaAhHQJKx+3LFGXp1fZQoaAZHQG2wlaB7NStoB01IAWgIR0CSsqf6XSjQdX2UKGgGR0Br4RhDw6QvaAdNHAJoCEdAkrMQsf7rLXV9lChoBkdAcrMoYvWYnmgHTWsBaAhHQJKzlNYbKih1fZQoaAZHQHG1fsiSq2loB00iAWgIR0CStCAuqWC3dX2UKGgGR0Bu9dlwtJ4CaAdNSAFoCEdAkrXwP/aQFXV9lChoBkdAblxBkZrHl2gHTYIBaAhHQJK2NptaY/p1fZQoaAZHQG0IqUNayKNoB018AWgIR0CStoyRB/qgdX2UKGgGR0ByVrQ0GeMAaAdNLwJoCEdAkrawvg3tKXV9lChoBkdAcgIHAh0QsmgHTTwBaAhHQJK4Ax0uDjB1fZQoaAZHQHHtKLfk3jxoB00+AWgIR0CSuBOLBKtgdX2UKGgGR0Bxc0rMC9ytaAdNOQFoCEdAkrlMCxNZeXV9lChoBkdAcqlUPQOWjWgHTVcBaAhHQJK5WLIgeRx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}