Jl-wei commited on
Commit
395b7b9
1 Parent(s): 280ab31

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - text-to-image
4
+ - stable-diffusion
5
+ - lora
6
+ - diffusers
7
+ language:
8
+ - en
9
+ library_name: diffusers
10
+ pipeline_tag: text-to-image
11
+ base_model: stabilityai/stable-diffusion-2-base
12
+ instance_prompt: "Mobile app:"
13
+ ---
14
+
15
+ # UI-Diffuser-V2
16
+ UI-Diffuser-V2 is fine tuned from "stabilityai/stable-diffusion-2-base" with the [GPSCap dataset](https://github.com/jl-wei/guing) for mobile UI generation.
17
+
18
+ This iteration, UI-Diffuser-V2, represents the second version of the UI-Diffuser model.
19
+
20
+ The first version, UI-Diffuser-V1, was introduced in our paper titled [Boosting GUI Prototyping with Diffusion Models](https://ieeexplore.ieee.org/abstract/document/10260853)
21
+
22
+ Using with Diffusers
23
+ ```python
24
+ import torch
25
+ from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
26
+
27
+ model_id = "stabilityai/stable-diffusion-2-base"
28
+ scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
29
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)
30
+
31
+ lora_path = "Jl-wei/ui-diffuser-v2"
32
+ pipe.load_lora_weights(lora_path)
33
+ pipe.to("cuda")
34
+
35
+ prompt = "Mobile app: health monitoring report"
36
+ images = pipe(prompt, num_inference_steps=30, guidance_scale=7.5, height=512, width=288, num_images_per_prompt=10).images
37
+
38
+ columns = 5
39
+ fig = plt.figure(figsize=(20,10))
40
+ for i, image in enumerate(images):
41
+ plt.subplot(int(len(images) / columns), columns, i + 1)
42
+ plt.imshow(image)
43
+ for ax in fig.axes:
44
+ ax.axis("off")
45
+ ```
46
+
47
+ Please note that the model can only be used for academic purpose.