--- tags: - text-to-image - stable-diffusion - lora - diffusers language: - en library_name: diffusers pipeline_tag: text-to-image base_model: stabilityai/stable-diffusion-2-base instance_prompt: "Mobile app:" --- # UI-Diffuser-V2 UI-Diffuser-V2 is fine tuned from "stabilityai/stable-diffusion-2-base" with the [GPSCap dataset](https://github.com/jl-wei/guing) for mobile UI generation. This iteration, UI-Diffuser-V2, represents the second version of the UI-Diffuser model. The first version, UI-Diffuser-V1, was introduced in our paper titled [Boosting GUI Prototyping with Diffusion Models](https://ieeexplore.ieee.org/abstract/document/10260853) Using with Diffusers ```python import torch from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler model_id = "stabilityai/stable-diffusion-2-base" scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) lora_path = "Jl-wei/ui-diffuser-v2" pipe.load_lora_weights(lora_path) pipe.to("cuda") prompt = "Mobile app: health monitoring report" images = pipe(prompt, num_inference_steps=30, guidance_scale=7.5, height=512, width=288, num_images_per_prompt=10).images columns = 5 fig = plt.figure(figsize=(20,10)) for i, image in enumerate(images): plt.subplot(int(len(images) / columns), columns, i + 1) plt.imshow(image) for ax in fig.axes: ax.axis("off") ``` Please note that the model can only be used for academic purpose.