Joash2024 commited on
Commit
d9d0c07
1 Parent(s): 4ceecb3

End of training

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: Math-SmolLM2-1.7B
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # Math-SmolLM2-1.7B
16
+
17
+ This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0102
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0002
39
+ - train_batch_size: 4
40
+ - eval_batch_size: 4
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 16
44
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
45
+ - lr_scheduler_type: cosine
46
+ - lr_scheduler_warmup_ratio: 0.03
47
+ - num_epochs: 1
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss |
53
+ |:-------------:|:-----:|:----:|:---------------:|
54
+ | 0.0174 | 0.2 | 100 | 0.0146 |
55
+ | 0.0122 | 0.4 | 200 | 0.0117 |
56
+ | 0.0108 | 0.6 | 300 | 0.0106 |
57
+ | 0.0101 | 0.8 | 400 | 0.0103 |
58
+ | 0.0101 | 1.0 | 500 | 0.0102 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - PEFT 0.13.2
64
+ - Transformers 4.46.2
65
+ - Pytorch 2.5.1+cu121
66
+ - Datasets 3.1.0
67
+ - Tokenizers 0.20.3