File size: 2,453 Bytes
53d80d3
5ff915f
53d80d3
5ff915f
53d80d3
2f8b2e3
53d80d3
 
5ff915f
53d80d3
 
 
2f8b2e3
53d80d3
 
 
5ff915f
53d80d3
2f8b2e3
5ff915f
53d80d3
 
 
 
5ff915f
 
 
53d80d3
 
 
 
 
2f8b2e3
53d80d3
2f8b2e3
53d80d3
5ff915f
 
 
 
53d80d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ff915f
53d80d3
 
 
 
 
 
 
5ff915f
 
 
 
 
 
 
53d80d3
 
 
 
5ff915f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- whisper-event
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: Whisper medium nan-tw common voice
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: audiofolder nan-tw
      type: audiofolder
      config: nan-tw
      split: test
      args: nan-tw
    metrics:
    - name: Wer
      type: wer
      value: 0.9615384615384616
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper medium nan-tw common voice

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the audiofolder nan-tw dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0141
- Model Preparation Time: 0.0121
- Wer: 0.9615
- Cer: 0.9524

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Model Preparation Time | Wer     | Cer     |
|:-------------:|:------:|:----:|:---------------:|:----------------------:|:-------:|:-------:|
| 0.97          | 0.2    | 1000 | 0.7356          | 0.0121                 | 38.1731 | 38.4762 |
| 0.3044        | 1.0388 | 2000 | 0.3099          | 0.0121                 | 23.4615 | 23.9048 |
| 0.3108        | 1.2388 | 3000 | 0.1153          | 0.0121                 | 7.5     | 7.7143  |
| 0.0544        | 2.0776 | 4000 | 0.0295          | 0.0121                 | 2.3077  | 2.2857  |
| 0.0678        | 2.2776 | 5000 | 0.0141          | 0.0121                 | 0.9615  | 0.9524  |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3