File size: 2,453 Bytes
53d80d3 5ff915f 53d80d3 5ff915f 53d80d3 2f8b2e3 53d80d3 5ff915f 53d80d3 2f8b2e3 53d80d3 5ff915f 53d80d3 2f8b2e3 5ff915f 53d80d3 5ff915f 53d80d3 2f8b2e3 53d80d3 2f8b2e3 53d80d3 5ff915f 53d80d3 5ff915f 53d80d3 5ff915f 53d80d3 5ff915f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- whisper-event
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: Whisper medium nan-tw common voice
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder nan-tw
type: audiofolder
config: nan-tw
split: test
args: nan-tw
metrics:
- name: Wer
type: wer
value: 0.9615384615384616
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper medium nan-tw common voice
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the audiofolder nan-tw dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0141
- Model Preparation Time: 0.0121
- Wer: 0.9615
- Cer: 0.9524
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:----------------------:|:-------:|:-------:|
| 0.97 | 0.2 | 1000 | 0.7356 | 0.0121 | 38.1731 | 38.4762 |
| 0.3044 | 1.0388 | 2000 | 0.3099 | 0.0121 | 23.4615 | 23.9048 |
| 0.3108 | 1.2388 | 3000 | 0.1153 | 0.0121 | 7.5 | 7.7143 |
| 0.0544 | 2.0776 | 4000 | 0.0295 | 0.0121 | 2.3077 | 2.2857 |
| 0.0678 | 2.2776 | 5000 | 0.0141 | 0.0121 | 0.9615 | 0.9524 |
### Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|