--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: openai/whisper-medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: nan-tw split: test args: nan-tw metrics: - name: Wer type: wer value: 0.9615384615384616 --- # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0141 - Model Preparation Time: 0.0121 - Wer: 0.9615 - Cer: 0.9524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:----------------------:|:-------:|:-------:| | 0.97 | 0.2 | 1000 | 0.7356 | 0.0121 | 38.1731 | 38.4762 | | 0.3044 | 1.0388 | 2000 | 0.3099 | 0.0121 | 23.4615 | 23.9048 | | 0.3108 | 1.2388 | 3000 | 0.1153 | 0.0121 | 7.5 | 7.7143 | | 0.0544 | 2.0776 | 4000 | 0.0295 | 0.0121 | 2.3077 | 2.2857 | | 0.0678 | 2.2776 | 5000 | 0.0141 | 0.0121 | 0.9615 | 0.9524 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3