Viking714 commited on
Commit
13ed045
1 Parent(s): f143f4c

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 248.73 +/- 19.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f167255a7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f167255a830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f167255a8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f167255a950>", "_build": "<function ActorCriticPolicy._build at 0x7f167255a9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f167255aa70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f167255ab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f167255ab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f167255ac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f167255acb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f167255ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f167255add0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1672553480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683863250666974556, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMvGq74Al4U/aCdavtJZn77sa4W+CPozPAAAAAAAAAAALQ5Hvvg3pD6S2pc+W5CevqrSAT1z7po8AAAAAAAAAADNmFI9cK6WP8Ii6T3dTMi+yYqQPcY2CD0AAAAAAAAAAMD3/j1kWkI/4FUGvFtml74tHno9e3aTvQAAAAAAAAAAs9ykPVSDAD9sEqa8ydNnvhHC8TsFIhG9AAAAAAAAAAAzMfs9ui+nP0pXKz/7xcS+pwyxPdKukj4AAAAAAAAAAOYfCD3RORI+ungBvpNgQ74YCH27SiljPQAAAAAAAAAAHUOHPi9O2T6xYie+EStSvhzbHT0Djxa9AAAAAAAAAACmSME9TKtTPoAHCb6v7lG+jsOpvHhmRzwAAAAAAAAAAPOprz4OOHk/C7KbPpJOrr4KSpM+WgGlPAAAAAAAAAAAszwoPbis4bs0lgI7buq3PDMKALvKyk87AACAPwAAgD8zxr88FMCwunCXdLnihi+03oCcOenLizgAAIA/AACAP2Y4eDxWiFY96WoHvazWGL4ydRU9vevCvAAAAAAAAAAAAGtOPggL5rypZ0g7neTcuVCLVr79M7e6AACAPwAAgD/zWds9qR9UPgeDj73pIS2+cwcfvJYcCTwAAAAAAAAAAJqBOjsF/Ly79iwlPbLehLzYbSi91lFhvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQECxxlxwQ1+MAWyUS/qMAXSUR0CiXu+iBXjmdX2UKGgGR0BwfjTVlPJraAdNdwFoCEdAol92v6j323V9lChoBkdASxfcxj8UEmgHS+xoCEdAomrHrMTviXV9lChoBkdAcB+7+DOC5GgHTS4BaAhHQKJq6pT/ACZ1fZQoaAZHQG4KT5ftx+9oB01yAWgIR0Ciaxau4gA7dX2UKGgGR0Bxh0jfNzKcaAdNYQFoCEdAomtCsKb8WXV9lChoBkdAbkau/UONHmgHTakBaAhHQKJrdj7Q9id1fZQoaAZHQFGd/8l5WzZoB00IAWgIR0Cia5Y3WFvidX2UKGgGR0By9mB+WnjyaAdNAQJoCEdAomwqfWcz7HV9lChoBkdAcFRXmeUY9GgHTSUBaAhHQKJtPnPE87p1fZQoaAZHQHG/wXQ+lj5oB01NAWgIR0CibY8afjCIdX2UKGgGR0BuYGU6gdwOaAdNSQFoCEdAom2Wmm+Cb3V9lChoBkdAcq37UG3WnWgHTV4BaAhHQKJtlN+so2J1fZQoaAZHQG88nlXA/LVoB00RAWgIR0CibgKQiiZfdX2UKGgGR0ByJaPMjeKsaAdNVwFoCEdAom7lpqREGHV9lChoBkdAcByrupjtomgHTTsBaAhHQKJu4nMt9QZ1fZQoaAZHQHJQjWkJrtVoB00eAWgIR0CibvpgkTpQdX2UKGgGR0BrQZwwTM7maAdNZQFoCEdAom/YFX7tRnV9lChoBkdAcAFVcUuct2gHTR8BaAhHQKJwcjKPn0V1fZQoaAZHQHIJ8hgVoHtoB01JAWgIR0CicHmdqcmTdX2UKGgGR0Bx/mNNrTH9aAdNRwFoCEdAonCRplBhQXV9lChoBkdAcasm1pj+aWgHTT8BaAhHQKJwx1wHZ9N1fZQoaAZHQHJ+i00FbFFoB01NAWgIR0CicNTzmOlwdX2UKGgGR0BwIrYWcjJNaAdNUAFoCEdAonFceEIw/XV9lChoBkdAcoluBMBZIWgHTTMBaAhHQKJxgrhisn11fZQoaAZHQHBBQfyPMjhoB00pAWgIR0CicldRaX8gdX2UKGgGR0ByfRnnMdLhaAdNKwFoCEdAonKiI+GGmHV9lChoBkdAbx47SRbKR2gHTSEBaAhHQKJy40qH4491fZQoaAZHQHC/xn3+MqBoB008AWgIR0Cicu2H+IdmdX2UKGgGR0BrbQXwb2lEaAdNTQFoCEdAonMlgUlAvHV9lChoBkdAcYILpzLfUGgHTVUBaAhHQKJ0mIE8q4J1fZQoaAZHQG5nitzS1E5oB01cAWgIR0CidNgJb+tKdX2UKGgGR0Bvfwosqaw2aAdNOwFoCEdAonUote2NN3V9lChoBkdAbmxkJa7mMmgHTR4BaAhHQKJ1QLKFIup1fZQoaAZHQHLljjm0VrRoB018AWgIR0CidV1Kf4ATdX2UKGgGR0BwmoghbGFSaAdNJQFoCEdAonW62+fyw3V9lChoBkdAbnYdDIBBA2gHTVEBaAhHQKJ2NZCfHxV1fZQoaAZHQGzK0fPomoloB01hAWgIR0Ciduc4HX2/dX2UKGgGR0BwBm3jMmngaAdNcgFoCEdAonbs9QoCuHV9lChoBkdAcGSbFS88LmgHTUoBaAhHQKJ3F8R+SbJ1fZQoaAZHQG9aky1uzhRoB01fAWgIR0Cid48vduYQdX2UKGgGR0BrxMzQ/oq1aAdNPQFoCEdAonfYBPsRhHV9lChoBkdAckdZf2K2rmgHTTMBaAhHQKJ39u8brC51fZQoaAZHQHEIIhyKekJoB00kAWgIR0Cid/d2X9iudX2UKGgGR0BxoIibDuSfaAdNSgFoCEdAoniEOf/WD3V9lChoBkdAcO083Mpw0mgHTUkBaAhHQKJ4tXU6PsB1fZQoaAZHQHIgSkXUH6doB005AWgIR0Cieb/FBIFvdX2UKGgGR0Bu7fmLcbiqaAdNTgFoCEdAonpphQWN3nV9lChoBkdAcFY1HOKO1mgHTWQBaAhHQKJ7e9pRGc51fZQoaAZHQHEfsVYZEUloB01gAWgIR0Cie4M4T9KmdX2UKGgGR0BxlNmwqy4XaAdNOwFoCEdAonvyjFhod3V9lChoBkdAbN4nKGL1mWgHTXQBaAhHQKKG5k6tDD11fZQoaAZHQG1JB7mdRSBoB01pAWgIR0CihxCiAUcodX2UKGgGR0BvQO7QLNOeaAdNLgFoCEdAoociVQhwEXV9lChoBkdAcbAo5ggHNWgHTUUBaAhHQKKHg01IiC91fZQoaAZHQG3XJi7TUiJoB00kAWgIR0CiiBd9c8kldX2UKGgGR0By7sI4VARkaAdNUAFoCEdAoohssOG0u3V9lChoBkdAcEViqQzUJGgHTXQBaAhHQKKIiRChN/R1fZQoaAZHQG11P/BFd9loB01RAWgIR0CiiMOm78NydX2UKGgGR0BuIceIVM24aAdNPAFoCEdAook3exfOU3V9lChoBkdAcb3l05lvqGgHTVUBaAhHQKKJ5v2oNut1fZQoaAZHQG9Qyq2jO9poB00lAWgIR0Ciij+XRgJDdX2UKGgGR0BKpFRHf/FSaAdL2WgIR0Ciin6gM+eOdX2UKGgGR0Bx4PYqXnhbaAdNxQFoCEdAoor/keZG8XV9lChoBkdAcbvFGoaUA2gHTRQBaAhHQKKLUlQdjoZ1fZQoaAZHQHJUdlqagEloB01eAWgIR0Cii/jwx33YdX2UKGgGR0BwtxoGpuMuaAdNHQFoCEdAoow6Hh0heXV9lChoBkdAcR2OY6XBxmgHTVMBaAhHQKKNEI8hcJN1fZQoaAZHQG3LpXp4bCJoB01xAWgIR0CijR9C3PRidX2UKGgGR0ByZBeu3c59aAdNNAFoCEdAoo0w1rIo3XV9lChoBkdAcJsGvwEyL2gHTVUBaAhHQKKNRUEPlMh1fZQoaAZHQHEXmaDwpfBoB001AWgIR0CijhcnVoYfdX2UKGgGR0BxjuOzY287aAdNUQFoCEdAoo5G801qFnV9lChoBkdAcKTeoUBXCGgHTVMBaAhHQKKOuSUTtb91fZQoaAZHQHFU4k3S8apoB01YAWgIR0CijweAmReUdX2UKGgGR0Bu7YS39aUzaAdNTgFoCEdAoo9WoNutOnV9lChoBkdAbs3m7rcCYGgHTTUBaAhHQKKP7zxwyZd1fZQoaAZHQHCPEz9CNS9oB01eAWgIR0CikOkWykbhdX2UKGgGR0BsTGHtWuHOaAdNNAFoCEdAopDxplBhQXV9lChoBkdAcRBNUfgaWGgHTSoBaAhHQKKRauyu6mR1fZQoaAZHQELfKkEcKgJoB00CAWgIR0CikdMrmQr+dX2UKGgGR0Bw3FFd9lVcaAdNFwFoCEdAopIrPt2LYXV9lChoBkdAcfhtSAH3UWgHTU8BaAhHQKKSaXTEzft1fZQoaAZHQHAfVfiPyTZoB01LAWgIR0CikyA75mAcdX2UKGgGR0BxaFJHy3CsaAdNLwFoCEdAopO7p1RtQHV9lChoBkdAcVE14gRsdmgHTWIBaAhHQKKTzpCa7Vd1fZQoaAZHQGlMLNGEwnJoB01aAWgIR0CilMalDWsjdX2UKGgGR0BsHZjz7MxHaAdNRQFoCEdAopTbbeuV5nV9lChoBkdAczvAd4mkWWgHTVcBaAhHQKKVigyuZCx1fZQoaAZHQG4AhfShJy1oB00jAWgIR0CilYhrWRRudX2UKGgGR0Buug4VARkFaAdNUAFoCEdAopW8sjFAFHV9lChoBkdAcspgiNbTt2gHTUACaAhHQKKVx8jzI3l1fZQoaAZHQHJmqFM7EHdoB00yAWgIR0Cilqxa5f+kdX2UKGgGR0Brumm51/2CaAdNJQFoCEdAopbpUgjhUHV9lChoBkdAb/NAVwgkkmgHTUoBaAhHQKKXHra/RE51fZQoaAZHQHAtatDD0lJoB00yAWgIR0Cil9G6f8MvdX2UKGgGR0BvtwdwNsnBaAdNOQFoCEdAophIFcIJJHV9lChoBkdAcqMraM72c2gHTVsBaAhHQKKYY/nGKht1fZQoaAZHQG4n0S7GvOhoB00+AWgIR0CimUBStNi6dX2UKGgGR0BvJV3EAHVxaAdNLAFoCEdAopmPMbFS9HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:115b76559ac16690b6d753b50f3222dd86d899f358a52c1e8791b86e5f729814
3
+ size 146755
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f167255a7a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f167255a830>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f167255a8c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f167255a950>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f167255a9e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f167255aa70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f167255ab00>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f167255ab90>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f167255ac20>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f167255acb0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f167255ad40>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f167255add0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f1672553480>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1683863250666974556,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMvGq74Al4U/aCdavtJZn77sa4W+CPozPAAAAAAAAAAALQ5Hvvg3pD6S2pc+W5CevqrSAT1z7po8AAAAAAAAAADNmFI9cK6WP8Ii6T3dTMi+yYqQPcY2CD0AAAAAAAAAAMD3/j1kWkI/4FUGvFtml74tHno9e3aTvQAAAAAAAAAAs9ykPVSDAD9sEqa8ydNnvhHC8TsFIhG9AAAAAAAAAAAzMfs9ui+nP0pXKz/7xcS+pwyxPdKukj4AAAAAAAAAAOYfCD3RORI+ungBvpNgQ74YCH27SiljPQAAAAAAAAAAHUOHPi9O2T6xYie+EStSvhzbHT0Djxa9AAAAAAAAAACmSME9TKtTPoAHCb6v7lG+jsOpvHhmRzwAAAAAAAAAAPOprz4OOHk/C7KbPpJOrr4KSpM+WgGlPAAAAAAAAAAAszwoPbis4bs0lgI7buq3PDMKALvKyk87AACAPwAAgD8zxr88FMCwunCXdLnihi+03oCcOenLizgAAIA/AACAP2Y4eDxWiFY96WoHvazWGL4ydRU9vevCvAAAAAAAAAAAAGtOPggL5rypZ0g7neTcuVCLVr79M7e6AACAPwAAgD/zWds9qR9UPgeDj73pIS2+cwcfvJYcCTwAAAAAAAAAAJqBOjsF/Ly79iwlPbLehLzYbSi91lFhvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQECxxlxwQ1+MAWyUS/qMAXSUR0CiXu+iBXjmdX2UKGgGR0BwfjTVlPJraAdNdwFoCEdAol92v6j323V9lChoBkdASxfcxj8UEmgHS+xoCEdAomrHrMTviXV9lChoBkdAcB+7+DOC5GgHTS4BaAhHQKJq6pT/ACZ1fZQoaAZHQG4KT5ftx+9oB01yAWgIR0Ciaxau4gA7dX2UKGgGR0Bxh0jfNzKcaAdNYQFoCEdAomtCsKb8WXV9lChoBkdAbkau/UONHmgHTakBaAhHQKJrdj7Q9id1fZQoaAZHQFGd/8l5WzZoB00IAWgIR0Cia5Y3WFvidX2UKGgGR0By9mB+WnjyaAdNAQJoCEdAomwqfWcz7HV9lChoBkdAcFRXmeUY9GgHTSUBaAhHQKJtPnPE87p1fZQoaAZHQHG/wXQ+lj5oB01NAWgIR0CibY8afjCIdX2UKGgGR0BuYGU6gdwOaAdNSQFoCEdAom2Wmm+Cb3V9lChoBkdAcq37UG3WnWgHTV4BaAhHQKJtlN+so2J1fZQoaAZHQG88nlXA/LVoB00RAWgIR0CibgKQiiZfdX2UKGgGR0ByJaPMjeKsaAdNVwFoCEdAom7lpqREGHV9lChoBkdAcByrupjtomgHTTsBaAhHQKJu4nMt9QZ1fZQoaAZHQHJQjWkJrtVoB00eAWgIR0CibvpgkTpQdX2UKGgGR0BrQZwwTM7maAdNZQFoCEdAom/YFX7tRnV9lChoBkdAcAFVcUuct2gHTR8BaAhHQKJwcjKPn0V1fZQoaAZHQHIJ8hgVoHtoB01JAWgIR0CicHmdqcmTdX2UKGgGR0Bx/mNNrTH9aAdNRwFoCEdAonCRplBhQXV9lChoBkdAcasm1pj+aWgHTT8BaAhHQKJwx1wHZ9N1fZQoaAZHQHJ+i00FbFFoB01NAWgIR0CicNTzmOlwdX2UKGgGR0BwIrYWcjJNaAdNUAFoCEdAonFceEIw/XV9lChoBkdAcoluBMBZIWgHTTMBaAhHQKJxgrhisn11fZQoaAZHQHBBQfyPMjhoB00pAWgIR0CicldRaX8gdX2UKGgGR0ByfRnnMdLhaAdNKwFoCEdAonKiI+GGmHV9lChoBkdAbx47SRbKR2gHTSEBaAhHQKJy40qH4491fZQoaAZHQHC/xn3+MqBoB008AWgIR0Cicu2H+IdmdX2UKGgGR0BrbQXwb2lEaAdNTQFoCEdAonMlgUlAvHV9lChoBkdAcYILpzLfUGgHTVUBaAhHQKJ0mIE8q4J1fZQoaAZHQG5nitzS1E5oB01cAWgIR0CidNgJb+tKdX2UKGgGR0Bvfwosqaw2aAdNOwFoCEdAonUote2NN3V9lChoBkdAbmxkJa7mMmgHTR4BaAhHQKJ1QLKFIup1fZQoaAZHQHLljjm0VrRoB018AWgIR0CidV1Kf4ATdX2UKGgGR0BwmoghbGFSaAdNJQFoCEdAonW62+fyw3V9lChoBkdAbnYdDIBBA2gHTVEBaAhHQKJ2NZCfHxV1fZQoaAZHQGzK0fPomoloB01hAWgIR0Ciduc4HX2/dX2UKGgGR0BwBm3jMmngaAdNcgFoCEdAonbs9QoCuHV9lChoBkdAcGSbFS88LmgHTUoBaAhHQKJ3F8R+SbJ1fZQoaAZHQG9aky1uzhRoB01fAWgIR0Cid48vduYQdX2UKGgGR0BrxMzQ/oq1aAdNPQFoCEdAonfYBPsRhHV9lChoBkdAckdZf2K2rmgHTTMBaAhHQKJ39u8brC51fZQoaAZHQHEIIhyKekJoB00kAWgIR0Cid/d2X9iudX2UKGgGR0BxoIibDuSfaAdNSgFoCEdAoniEOf/WD3V9lChoBkdAcO083Mpw0mgHTUkBaAhHQKJ4tXU6PsB1fZQoaAZHQHIgSkXUH6doB005AWgIR0Cieb/FBIFvdX2UKGgGR0Bu7fmLcbiqaAdNTgFoCEdAonpphQWN3nV9lChoBkdAcFY1HOKO1mgHTWQBaAhHQKJ7e9pRGc51fZQoaAZHQHEfsVYZEUloB01gAWgIR0Cie4M4T9KmdX2UKGgGR0BxlNmwqy4XaAdNOwFoCEdAonvyjFhod3V9lChoBkdAbN4nKGL1mWgHTXQBaAhHQKKG5k6tDD11fZQoaAZHQG1JB7mdRSBoB01pAWgIR0CihxCiAUcodX2UKGgGR0BvQO7QLNOeaAdNLgFoCEdAoociVQhwEXV9lChoBkdAcbAo5ggHNWgHTUUBaAhHQKKHg01IiC91fZQoaAZHQG3XJi7TUiJoB00kAWgIR0CiiBd9c8kldX2UKGgGR0By7sI4VARkaAdNUAFoCEdAoohssOG0u3V9lChoBkdAcEViqQzUJGgHTXQBaAhHQKKIiRChN/R1fZQoaAZHQG11P/BFd9loB01RAWgIR0CiiMOm78NydX2UKGgGR0BuIceIVM24aAdNPAFoCEdAook3exfOU3V9lChoBkdAcb3l05lvqGgHTVUBaAhHQKKJ5v2oNut1fZQoaAZHQG9Qyq2jO9poB00lAWgIR0Ciij+XRgJDdX2UKGgGR0BKpFRHf/FSaAdL2WgIR0Ciin6gM+eOdX2UKGgGR0Bx4PYqXnhbaAdNxQFoCEdAoor/keZG8XV9lChoBkdAcbvFGoaUA2gHTRQBaAhHQKKLUlQdjoZ1fZQoaAZHQHJUdlqagEloB01eAWgIR0Cii/jwx33YdX2UKGgGR0BwtxoGpuMuaAdNHQFoCEdAoow6Hh0heXV9lChoBkdAcR2OY6XBxmgHTVMBaAhHQKKNEI8hcJN1fZQoaAZHQG3LpXp4bCJoB01xAWgIR0CijR9C3PRidX2UKGgGR0ByZBeu3c59aAdNNAFoCEdAoo0w1rIo3XV9lChoBkdAcJsGvwEyL2gHTVUBaAhHQKKNRUEPlMh1fZQoaAZHQHEXmaDwpfBoB001AWgIR0CijhcnVoYfdX2UKGgGR0BxjuOzY287aAdNUQFoCEdAoo5G801qFnV9lChoBkdAcKTeoUBXCGgHTVMBaAhHQKKOuSUTtb91fZQoaAZHQHFU4k3S8apoB01YAWgIR0CijweAmReUdX2UKGgGR0Bu7YS39aUzaAdNTgFoCEdAoo9WoNutOnV9lChoBkdAbs3m7rcCYGgHTTUBaAhHQKKP7zxwyZd1fZQoaAZHQHCPEz9CNS9oB01eAWgIR0CikOkWykbhdX2UKGgGR0BsTGHtWuHOaAdNNAFoCEdAopDxplBhQXV9lChoBkdAcRBNUfgaWGgHTSoBaAhHQKKRauyu6mR1fZQoaAZHQELfKkEcKgJoB00CAWgIR0CikdMrmQr+dX2UKGgGR0Bw3FFd9lVcaAdNFwFoCEdAopIrPt2LYXV9lChoBkdAcfhtSAH3UWgHTU8BaAhHQKKSaXTEzft1fZQoaAZHQHAfVfiPyTZoB01LAWgIR0CikyA75mAcdX2UKGgGR0BxaFJHy3CsaAdNLwFoCEdAopO7p1RtQHV9lChoBkdAcVE14gRsdmgHTWIBaAhHQKKTzpCa7Vd1fZQoaAZHQGlMLNGEwnJoB01aAWgIR0CilMalDWsjdX2UKGgGR0BsHZjz7MxHaAdNRQFoCEdAopTbbeuV5nV9lChoBkdAczvAd4mkWWgHTVcBaAhHQKKVigyuZCx1fZQoaAZHQG4AhfShJy1oB00jAWgIR0CilYhrWRRudX2UKGgGR0Buug4VARkFaAdNUAFoCEdAopW8sjFAFHV9lChoBkdAcspgiNbTt2gHTUACaAhHQKKVx8jzI3l1fZQoaAZHQHJmqFM7EHdoB00yAWgIR0Cilqxa5f+kdX2UKGgGR0Brumm51/2CaAdNJQFoCEdAopbpUgjhUHV9lChoBkdAb/NAVwgkkmgHTUoBaAhHQKKXHra/RE51fZQoaAZHQHAtatDD0lJoB00yAWgIR0Cil9G6f8MvdX2UKGgGR0BvtwdwNsnBaAdNOQFoCEdAophIFcIJJHV9lChoBkdAcqMraM72c2gHTVsBaAhHQKKYY/nGKht1fZQoaAZHQG4n0S7GvOhoB00+AWgIR0CimUBStNi6dX2UKGgGR0BvJV3EAHVxaAdNLAFoCEdAopmPMbFS9HVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 276,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80aab800af3df56c6bd13837180366cd417fb7a0b6f29270e76e181e6d54542c
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:453b1d36dbc1ffffc1e177e09af43d83e555a32b6b7eb2fa3d87ef3d6f577d90
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (178 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 248.73035443779426, "std_reward": 19.35666191369571, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-12T04:15:24.284168"}