JohnFante commited on
Commit
59326df
·
verified ·
1 Parent(s): 50bd459

Upload 8 files

Browse files
README.md ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - text-classification
6
+ - emotion
7
+ - endpoints-template
8
+ license: apache-2.0
9
+ datasets:
10
+ - emotion
11
+ metrics:
12
+ - Accuracy, F1 Score
13
+ ---
14
+
15
+
16
+ # Fork of [bhadresh-savani/distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForSequenceClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "sadness",
13
+ "1": "joy",
14
+ "2": "love",
15
+ "3": "anger",
16
+ "4": "fear",
17
+ "5": "surprise"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "label2id": {
21
+ "anger": 3,
22
+ "fear": 4,
23
+ "joy": 1,
24
+ "love": 2,
25
+ "sadness": 0,
26
+ "surprise": 5
27
+ },
28
+ "max_position_embeddings": 512,
29
+ "model_type": "distilbert",
30
+ "n_heads": 12,
31
+ "n_layers": 6,
32
+ "pad_token_id": 0,
33
+ "qa_dropout": 0.1,
34
+ "seq_classif_dropout": 0.2,
35
+ "sinusoidal_pos_embds": false,
36
+ "tie_weights_": true,
37
+ "transformers_version": "4.11.0.dev0",
38
+ "vocab_size": 30522
39
+ }
handler.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ from transformers import pipeline
3
+ import holidays
4
+
5
+
6
+ class EndpointHandler:
7
+ def __init__(self, path=""):
8
+ self.pipeline = pipeline("text-classification", model=path)
9
+ self.holidays = holidays.US()
10
+
11
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
12
+ """
13
+ data args:
14
+ inputs (:obj: `str`)
15
+ date (:obj: `str`)
16
+ Return:
17
+ A :obj:`list` | `dict`: will be serialized and returned
18
+ """
19
+ # get inputs
20
+ print('data -> ', data)
21
+ inputs = data.pop("inputs", data)
22
+ # get additional date field
23
+ print('input -> ', inputs)
24
+ date = data.pop("date", None)
25
+
26
+ # check if date exists and if it is a holiday
27
+ if date is not None and date in self.holidays:
28
+ return [{"data":data, "label": "happy", "score": 1}]
29
+
30
+ # run normal prediction
31
+ prediction = self.pipeline(inputs)
32
+ return prediction
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aa7398d830fcc94f95af88d7cc3013813668cfc58a07d75a8116cfd8af75c4d
3
+ size 267875479
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ holidays
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "distilbert-base-uncased"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff