--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-v3 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan metrics: - name: Accuracy type: accuracy value: 0.87 pipeline_tag: audio-classification --- # distilhubert-finetuned-gtzan-v3 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.0906 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8287 | 1.0 | 899 | 0.8991 | 0.68 | | 2.2164 | 2.0 | 1798 | 1.3184 | 0.71 | | 0.0099 | 3.0 | 2697 | 0.9288 | 0.78 | | 0.0679 | 4.0 | 3596 | 0.8131 | 0.84 | | 0.0119 | 5.0 | 4495 | 1.1122 | 0.8 | | 0.0051 | 6.0 | 5394 | 0.9594 | 0.86 | | 0.0008 | 7.0 | 6293 | 0.9475 | 0.87 | | 0.0002 | 8.0 | 7192 | 1.1026 | 0.86 | | 0.0002 | 9.0 | 8091 | 1.0751 | 0.87 | | 0.0002 | 10.0 | 8990 | 1.0906 | 0.87 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.1.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1