JorgeDeC commited on
Commit
9203aa8
1 Parent(s): d7637c9

Upload folder using huggingface_hub

Browse files
Files changed (6) hide show
  1. README.md +202 -0
  2. adapter_model.safetensors +1 -1
  3. optimizer.pt +3 -0
  4. rng_state.pth +3 -0
  5. scheduler.pt +3 -0
  6. trainer_state.json +728 -0
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: alpindale/Mistral-7B-v0.2-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.7.1
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b45ffb1c94a2c9f87c29b2799ad3238b2ff5a5e695c63a688cd8f9672f1ce749
3
  size 83946192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db825eb96327ec98cd6c0be92184316c7c7935759efc56d7aef86ab27c6e62bb
3
  size 83946192
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e68196998e0682cd8a63edf21175e59fb77f5bf01176b5d76362b170be4f11a
3
+ size 168150290
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8620683b434dbf12b6f8f84104ff8ac58dcf4f7022a60172a24bedebe38da4d
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a069e088d8757d802db5cca11d1c41afc7ad39de7968d661b08eac02ca5bd4f3
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,728 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.07424456158586383,
5
+ "eval_steps": 500,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 1.75,
14
+ "learning_rate": 2.9673590504451043e-07,
15
+ "loss": 1.433,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "grad_norm": 1.578125,
21
+ "learning_rate": 1.483679525222552e-06,
22
+ "loss": 1.5006,
23
+ "step": 5
24
+ },
25
+ {
26
+ "epoch": 0.0,
27
+ "grad_norm": 1.4921875,
28
+ "learning_rate": 2.967359050445104e-06,
29
+ "loss": 1.4919,
30
+ "step": 10
31
+ },
32
+ {
33
+ "epoch": 0.0,
34
+ "grad_norm": 1.4921875,
35
+ "learning_rate": 4.451038575667656e-06,
36
+ "loss": 1.4531,
37
+ "step": 15
38
+ },
39
+ {
40
+ "epoch": 0.0,
41
+ "grad_norm": 1.0234375,
42
+ "learning_rate": 5.934718100890208e-06,
43
+ "loss": 1.4242,
44
+ "step": 20
45
+ },
46
+ {
47
+ "epoch": 0.0,
48
+ "grad_norm": 0.9453125,
49
+ "learning_rate": 7.418397626112759e-06,
50
+ "loss": 1.3932,
51
+ "step": 25
52
+ },
53
+ {
54
+ "epoch": 0.0,
55
+ "grad_norm": 0.8359375,
56
+ "learning_rate": 8.902077151335312e-06,
57
+ "loss": 1.3661,
58
+ "step": 30
59
+ },
60
+ {
61
+ "epoch": 0.01,
62
+ "grad_norm": 0.828125,
63
+ "learning_rate": 1.0385756676557864e-05,
64
+ "loss": 1.3677,
65
+ "step": 35
66
+ },
67
+ {
68
+ "epoch": 0.01,
69
+ "grad_norm": 0.59375,
70
+ "learning_rate": 1.1869436201780416e-05,
71
+ "loss": 1.3497,
72
+ "step": 40
73
+ },
74
+ {
75
+ "epoch": 0.01,
76
+ "grad_norm": 0.56640625,
77
+ "learning_rate": 1.3353115727002968e-05,
78
+ "loss": 1.3049,
79
+ "step": 45
80
+ },
81
+ {
82
+ "epoch": 0.01,
83
+ "grad_norm": 0.439453125,
84
+ "learning_rate": 1.4836795252225518e-05,
85
+ "loss": 1.2836,
86
+ "step": 50
87
+ },
88
+ {
89
+ "epoch": 0.01,
90
+ "grad_norm": 0.46484375,
91
+ "learning_rate": 1.6320474777448072e-05,
92
+ "loss": 1.3133,
93
+ "step": 55
94
+ },
95
+ {
96
+ "epoch": 0.01,
97
+ "grad_norm": 0.40625,
98
+ "learning_rate": 1.7804154302670624e-05,
99
+ "loss": 1.2596,
100
+ "step": 60
101
+ },
102
+ {
103
+ "epoch": 0.01,
104
+ "grad_norm": 0.408203125,
105
+ "learning_rate": 1.9287833827893176e-05,
106
+ "loss": 1.2612,
107
+ "step": 65
108
+ },
109
+ {
110
+ "epoch": 0.01,
111
+ "grad_norm": 0.376953125,
112
+ "learning_rate": 2.0771513353115728e-05,
113
+ "loss": 1.2584,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 0.01,
118
+ "grad_norm": 0.40625,
119
+ "learning_rate": 2.225519287833828e-05,
120
+ "loss": 1.2386,
121
+ "step": 75
122
+ },
123
+ {
124
+ "epoch": 0.01,
125
+ "grad_norm": 0.353515625,
126
+ "learning_rate": 2.3738872403560832e-05,
127
+ "loss": 1.1833,
128
+ "step": 80
129
+ },
130
+ {
131
+ "epoch": 0.01,
132
+ "grad_norm": 0.349609375,
133
+ "learning_rate": 2.5222551928783384e-05,
134
+ "loss": 1.2411,
135
+ "step": 85
136
+ },
137
+ {
138
+ "epoch": 0.01,
139
+ "grad_norm": 0.36328125,
140
+ "learning_rate": 2.6706231454005936e-05,
141
+ "loss": 1.1956,
142
+ "step": 90
143
+ },
144
+ {
145
+ "epoch": 0.01,
146
+ "grad_norm": 0.369140625,
147
+ "learning_rate": 2.818991097922849e-05,
148
+ "loss": 1.2327,
149
+ "step": 95
150
+ },
151
+ {
152
+ "epoch": 0.01,
153
+ "grad_norm": 0.353515625,
154
+ "learning_rate": 2.9673590504451037e-05,
155
+ "loss": 1.1896,
156
+ "step": 100
157
+ },
158
+ {
159
+ "epoch": 0.02,
160
+ "grad_norm": 0.3984375,
161
+ "learning_rate": 3.115727002967359e-05,
162
+ "loss": 1.1979,
163
+ "step": 105
164
+ },
165
+ {
166
+ "epoch": 0.02,
167
+ "grad_norm": 0.388671875,
168
+ "learning_rate": 3.2640949554896144e-05,
169
+ "loss": 1.2004,
170
+ "step": 110
171
+ },
172
+ {
173
+ "epoch": 0.02,
174
+ "grad_norm": 0.392578125,
175
+ "learning_rate": 3.41246290801187e-05,
176
+ "loss": 1.1624,
177
+ "step": 115
178
+ },
179
+ {
180
+ "epoch": 0.02,
181
+ "grad_norm": 0.400390625,
182
+ "learning_rate": 3.560830860534125e-05,
183
+ "loss": 1.1914,
184
+ "step": 120
185
+ },
186
+ {
187
+ "epoch": 0.02,
188
+ "grad_norm": 0.41796875,
189
+ "learning_rate": 3.70919881305638e-05,
190
+ "loss": 1.1952,
191
+ "step": 125
192
+ },
193
+ {
194
+ "epoch": 0.02,
195
+ "grad_norm": 0.4140625,
196
+ "learning_rate": 3.857566765578635e-05,
197
+ "loss": 1.1538,
198
+ "step": 130
199
+ },
200
+ {
201
+ "epoch": 0.02,
202
+ "grad_norm": 0.4375,
203
+ "learning_rate": 4.005934718100891e-05,
204
+ "loss": 1.1702,
205
+ "step": 135
206
+ },
207
+ {
208
+ "epoch": 0.02,
209
+ "grad_norm": 0.44140625,
210
+ "learning_rate": 4.1543026706231456e-05,
211
+ "loss": 1.1683,
212
+ "step": 140
213
+ },
214
+ {
215
+ "epoch": 0.02,
216
+ "grad_norm": 0.443359375,
217
+ "learning_rate": 4.3026706231454005e-05,
218
+ "loss": 1.1822,
219
+ "step": 145
220
+ },
221
+ {
222
+ "epoch": 0.02,
223
+ "grad_norm": 0.482421875,
224
+ "learning_rate": 4.451038575667656e-05,
225
+ "loss": 1.1649,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 0.02,
230
+ "grad_norm": 0.46484375,
231
+ "learning_rate": 4.5994065281899116e-05,
232
+ "loss": 1.1868,
233
+ "step": 155
234
+ },
235
+ {
236
+ "epoch": 0.02,
237
+ "grad_norm": 0.5,
238
+ "learning_rate": 4.7477744807121664e-05,
239
+ "loss": 1.161,
240
+ "step": 160
241
+ },
242
+ {
243
+ "epoch": 0.02,
244
+ "grad_norm": 0.451171875,
245
+ "learning_rate": 4.896142433234421e-05,
246
+ "loss": 1.1454,
247
+ "step": 165
248
+ },
249
+ {
250
+ "epoch": 0.03,
251
+ "grad_norm": 0.45703125,
252
+ "learning_rate": 5.044510385756677e-05,
253
+ "loss": 1.1388,
254
+ "step": 170
255
+ },
256
+ {
257
+ "epoch": 0.03,
258
+ "grad_norm": 0.490234375,
259
+ "learning_rate": 5.1928783382789324e-05,
260
+ "loss": 1.1253,
261
+ "step": 175
262
+ },
263
+ {
264
+ "epoch": 0.03,
265
+ "grad_norm": 0.51171875,
266
+ "learning_rate": 5.341246290801187e-05,
267
+ "loss": 1.1527,
268
+ "step": 180
269
+ },
270
+ {
271
+ "epoch": 0.03,
272
+ "grad_norm": 0.486328125,
273
+ "learning_rate": 5.489614243323442e-05,
274
+ "loss": 1.1234,
275
+ "step": 185
276
+ },
277
+ {
278
+ "epoch": 0.03,
279
+ "grad_norm": 0.46875,
280
+ "learning_rate": 5.637982195845698e-05,
281
+ "loss": 1.113,
282
+ "step": 190
283
+ },
284
+ {
285
+ "epoch": 0.03,
286
+ "grad_norm": 0.458984375,
287
+ "learning_rate": 5.7863501483679525e-05,
288
+ "loss": 1.1368,
289
+ "step": 195
290
+ },
291
+ {
292
+ "epoch": 0.03,
293
+ "grad_norm": 0.484375,
294
+ "learning_rate": 5.9347181008902074e-05,
295
+ "loss": 1.137,
296
+ "step": 200
297
+ },
298
+ {
299
+ "epoch": 0.03,
300
+ "grad_norm": 0.4765625,
301
+ "learning_rate": 6.0830860534124636e-05,
302
+ "loss": 1.1286,
303
+ "step": 205
304
+ },
305
+ {
306
+ "epoch": 0.03,
307
+ "grad_norm": 0.484375,
308
+ "learning_rate": 6.231454005934718e-05,
309
+ "loss": 1.1277,
310
+ "step": 210
311
+ },
312
+ {
313
+ "epoch": 0.03,
314
+ "grad_norm": 0.474609375,
315
+ "learning_rate": 6.379821958456974e-05,
316
+ "loss": 1.1268,
317
+ "step": 215
318
+ },
319
+ {
320
+ "epoch": 0.03,
321
+ "grad_norm": 0.47265625,
322
+ "learning_rate": 6.528189910979229e-05,
323
+ "loss": 1.0993,
324
+ "step": 220
325
+ },
326
+ {
327
+ "epoch": 0.03,
328
+ "grad_norm": 0.50390625,
329
+ "learning_rate": 6.676557863501484e-05,
330
+ "loss": 1.1017,
331
+ "step": 225
332
+ },
333
+ {
334
+ "epoch": 0.03,
335
+ "grad_norm": 0.4609375,
336
+ "learning_rate": 6.82492581602374e-05,
337
+ "loss": 1.1345,
338
+ "step": 230
339
+ },
340
+ {
341
+ "epoch": 0.03,
342
+ "grad_norm": 0.48828125,
343
+ "learning_rate": 6.973293768545995e-05,
344
+ "loss": 1.1086,
345
+ "step": 235
346
+ },
347
+ {
348
+ "epoch": 0.04,
349
+ "grad_norm": 0.45703125,
350
+ "learning_rate": 7.12166172106825e-05,
351
+ "loss": 1.0791,
352
+ "step": 240
353
+ },
354
+ {
355
+ "epoch": 0.04,
356
+ "grad_norm": 0.470703125,
357
+ "learning_rate": 7.270029673590505e-05,
358
+ "loss": 1.1158,
359
+ "step": 245
360
+ },
361
+ {
362
+ "epoch": 0.04,
363
+ "grad_norm": 0.46875,
364
+ "learning_rate": 7.41839762611276e-05,
365
+ "loss": 1.132,
366
+ "step": 250
367
+ },
368
+ {
369
+ "epoch": 0.04,
370
+ "grad_norm": 0.4609375,
371
+ "learning_rate": 7.566765578635016e-05,
372
+ "loss": 1.1438,
373
+ "step": 255
374
+ },
375
+ {
376
+ "epoch": 0.04,
377
+ "grad_norm": 0.470703125,
378
+ "learning_rate": 7.71513353115727e-05,
379
+ "loss": 1.1405,
380
+ "step": 260
381
+ },
382
+ {
383
+ "epoch": 0.04,
384
+ "grad_norm": 0.447265625,
385
+ "learning_rate": 7.863501483679525e-05,
386
+ "loss": 1.1124,
387
+ "step": 265
388
+ },
389
+ {
390
+ "epoch": 0.04,
391
+ "grad_norm": 0.486328125,
392
+ "learning_rate": 8.011869436201782e-05,
393
+ "loss": 1.0813,
394
+ "step": 270
395
+ },
396
+ {
397
+ "epoch": 0.04,
398
+ "grad_norm": 0.48046875,
399
+ "learning_rate": 8.160237388724036e-05,
400
+ "loss": 1.1194,
401
+ "step": 275
402
+ },
403
+ {
404
+ "epoch": 0.04,
405
+ "grad_norm": 0.462890625,
406
+ "learning_rate": 8.308605341246291e-05,
407
+ "loss": 1.0927,
408
+ "step": 280
409
+ },
410
+ {
411
+ "epoch": 0.04,
412
+ "grad_norm": 0.48046875,
413
+ "learning_rate": 8.456973293768546e-05,
414
+ "loss": 1.1277,
415
+ "step": 285
416
+ },
417
+ {
418
+ "epoch": 0.04,
419
+ "grad_norm": 0.4453125,
420
+ "learning_rate": 8.605341246290801e-05,
421
+ "loss": 1.1271,
422
+ "step": 290
423
+ },
424
+ {
425
+ "epoch": 0.04,
426
+ "grad_norm": 0.435546875,
427
+ "learning_rate": 8.753709198813057e-05,
428
+ "loss": 1.1162,
429
+ "step": 295
430
+ },
431
+ {
432
+ "epoch": 0.04,
433
+ "grad_norm": 0.44921875,
434
+ "learning_rate": 8.902077151335312e-05,
435
+ "loss": 1.0857,
436
+ "step": 300
437
+ },
438
+ {
439
+ "epoch": 0.05,
440
+ "grad_norm": 0.4375,
441
+ "learning_rate": 9.050445103857568e-05,
442
+ "loss": 1.0869,
443
+ "step": 305
444
+ },
445
+ {
446
+ "epoch": 0.05,
447
+ "grad_norm": 0.4453125,
448
+ "learning_rate": 9.198813056379823e-05,
449
+ "loss": 1.0655,
450
+ "step": 310
451
+ },
452
+ {
453
+ "epoch": 0.05,
454
+ "grad_norm": 0.4296875,
455
+ "learning_rate": 9.347181008902077e-05,
456
+ "loss": 1.0585,
457
+ "step": 315
458
+ },
459
+ {
460
+ "epoch": 0.05,
461
+ "grad_norm": 0.41796875,
462
+ "learning_rate": 9.495548961424333e-05,
463
+ "loss": 1.1144,
464
+ "step": 320
465
+ },
466
+ {
467
+ "epoch": 0.05,
468
+ "grad_norm": 0.43359375,
469
+ "learning_rate": 9.643916913946588e-05,
470
+ "loss": 1.0719,
471
+ "step": 325
472
+ },
473
+ {
474
+ "epoch": 0.05,
475
+ "grad_norm": 0.416015625,
476
+ "learning_rate": 9.792284866468843e-05,
477
+ "loss": 1.0919,
478
+ "step": 330
479
+ },
480
+ {
481
+ "epoch": 0.05,
482
+ "grad_norm": 0.423828125,
483
+ "learning_rate": 9.940652818991099e-05,
484
+ "loss": 1.1223,
485
+ "step": 335
486
+ },
487
+ {
488
+ "epoch": 0.05,
489
+ "grad_norm": 0.431640625,
490
+ "learning_rate": 0.00010089020771513354,
491
+ "loss": 1.0565,
492
+ "step": 340
493
+ },
494
+ {
495
+ "epoch": 0.05,
496
+ "grad_norm": 0.431640625,
497
+ "learning_rate": 0.00010237388724035609,
498
+ "loss": 1.0962,
499
+ "step": 345
500
+ },
501
+ {
502
+ "epoch": 0.05,
503
+ "grad_norm": 0.44921875,
504
+ "learning_rate": 0.00010385756676557865,
505
+ "loss": 1.0959,
506
+ "step": 350
507
+ },
508
+ {
509
+ "epoch": 0.05,
510
+ "grad_norm": 0.43359375,
511
+ "learning_rate": 0.0001053412462908012,
512
+ "loss": 1.0628,
513
+ "step": 355
514
+ },
515
+ {
516
+ "epoch": 0.05,
517
+ "grad_norm": 0.431640625,
518
+ "learning_rate": 0.00010682492581602374,
519
+ "loss": 1.0975,
520
+ "step": 360
521
+ },
522
+ {
523
+ "epoch": 0.05,
524
+ "grad_norm": 0.42578125,
525
+ "learning_rate": 0.0001083086053412463,
526
+ "loss": 1.0727,
527
+ "step": 365
528
+ },
529
+ {
530
+ "epoch": 0.05,
531
+ "grad_norm": 0.416015625,
532
+ "learning_rate": 0.00010979228486646884,
533
+ "loss": 1.0649,
534
+ "step": 370
535
+ },
536
+ {
537
+ "epoch": 0.06,
538
+ "grad_norm": 0.4296875,
539
+ "learning_rate": 0.00011127596439169139,
540
+ "loss": 1.0904,
541
+ "step": 375
542
+ },
543
+ {
544
+ "epoch": 0.06,
545
+ "grad_norm": 0.3984375,
546
+ "learning_rate": 0.00011275964391691397,
547
+ "loss": 1.079,
548
+ "step": 380
549
+ },
550
+ {
551
+ "epoch": 0.06,
552
+ "grad_norm": 0.40234375,
553
+ "learning_rate": 0.0001142433234421365,
554
+ "loss": 1.0522,
555
+ "step": 385
556
+ },
557
+ {
558
+ "epoch": 0.06,
559
+ "grad_norm": 0.431640625,
560
+ "learning_rate": 0.00011572700296735905,
561
+ "loss": 1.0579,
562
+ "step": 390
563
+ },
564
+ {
565
+ "epoch": 0.06,
566
+ "grad_norm": 0.396484375,
567
+ "learning_rate": 0.0001172106824925816,
568
+ "loss": 1.0871,
569
+ "step": 395
570
+ },
571
+ {
572
+ "epoch": 0.06,
573
+ "grad_norm": 0.41015625,
574
+ "learning_rate": 0.00011869436201780415,
575
+ "loss": 1.0936,
576
+ "step": 400
577
+ },
578
+ {
579
+ "epoch": 0.06,
580
+ "grad_norm": 0.412109375,
581
+ "learning_rate": 0.00012017804154302672,
582
+ "loss": 1.0734,
583
+ "step": 405
584
+ },
585
+ {
586
+ "epoch": 0.06,
587
+ "grad_norm": 0.392578125,
588
+ "learning_rate": 0.00012166172106824927,
589
+ "loss": 1.0657,
590
+ "step": 410
591
+ },
592
+ {
593
+ "epoch": 0.06,
594
+ "grad_norm": 0.4140625,
595
+ "learning_rate": 0.00012314540059347182,
596
+ "loss": 1.0884,
597
+ "step": 415
598
+ },
599
+ {
600
+ "epoch": 0.06,
601
+ "grad_norm": 0.408203125,
602
+ "learning_rate": 0.00012462908011869436,
603
+ "loss": 1.0683,
604
+ "step": 420
605
+ },
606
+ {
607
+ "epoch": 0.06,
608
+ "grad_norm": 0.3984375,
609
+ "learning_rate": 0.00012611275964391692,
610
+ "loss": 1.1073,
611
+ "step": 425
612
+ },
613
+ {
614
+ "epoch": 0.06,
615
+ "grad_norm": 0.412109375,
616
+ "learning_rate": 0.00012759643916913948,
617
+ "loss": 1.0849,
618
+ "step": 430
619
+ },
620
+ {
621
+ "epoch": 0.06,
622
+ "grad_norm": 0.40625,
623
+ "learning_rate": 0.00012908011869436204,
624
+ "loss": 1.0798,
625
+ "step": 435
626
+ },
627
+ {
628
+ "epoch": 0.07,
629
+ "grad_norm": 0.404296875,
630
+ "learning_rate": 0.00013056379821958458,
631
+ "loss": 1.1029,
632
+ "step": 440
633
+ },
634
+ {
635
+ "epoch": 0.07,
636
+ "grad_norm": 0.3828125,
637
+ "learning_rate": 0.0001320474777448071,
638
+ "loss": 1.0664,
639
+ "step": 445
640
+ },
641
+ {
642
+ "epoch": 0.07,
643
+ "grad_norm": 0.38671875,
644
+ "learning_rate": 0.00013353115727002967,
645
+ "loss": 1.0998,
646
+ "step": 450
647
+ },
648
+ {
649
+ "epoch": 0.07,
650
+ "grad_norm": 0.40234375,
651
+ "learning_rate": 0.00013501483679525224,
652
+ "loss": 1.0834,
653
+ "step": 455
654
+ },
655
+ {
656
+ "epoch": 0.07,
657
+ "grad_norm": 0.400390625,
658
+ "learning_rate": 0.0001364985163204748,
659
+ "loss": 1.062,
660
+ "step": 460
661
+ },
662
+ {
663
+ "epoch": 0.07,
664
+ "grad_norm": 0.3984375,
665
+ "learning_rate": 0.00013798219584569733,
666
+ "loss": 1.0825,
667
+ "step": 465
668
+ },
669
+ {
670
+ "epoch": 0.07,
671
+ "grad_norm": 0.388671875,
672
+ "learning_rate": 0.0001394658753709199,
673
+ "loss": 1.0689,
674
+ "step": 470
675
+ },
676
+ {
677
+ "epoch": 0.07,
678
+ "grad_norm": 0.392578125,
679
+ "learning_rate": 0.00014094955489614243,
680
+ "loss": 1.0557,
681
+ "step": 475
682
+ },
683
+ {
684
+ "epoch": 0.07,
685
+ "grad_norm": 0.380859375,
686
+ "learning_rate": 0.000142433234421365,
687
+ "loss": 1.0582,
688
+ "step": 480
689
+ },
690
+ {
691
+ "epoch": 0.07,
692
+ "grad_norm": 0.380859375,
693
+ "learning_rate": 0.00014391691394658756,
694
+ "loss": 1.0921,
695
+ "step": 485
696
+ },
697
+ {
698
+ "epoch": 0.07,
699
+ "grad_norm": 0.384765625,
700
+ "learning_rate": 0.0001454005934718101,
701
+ "loss": 1.0544,
702
+ "step": 490
703
+ },
704
+ {
705
+ "epoch": 0.07,
706
+ "grad_norm": 0.39453125,
707
+ "learning_rate": 0.00014688427299703265,
708
+ "loss": 1.0333,
709
+ "step": 495
710
+ },
711
+ {
712
+ "epoch": 0.07,
713
+ "grad_norm": 0.384765625,
714
+ "learning_rate": 0.0001483679525222552,
715
+ "loss": 1.0454,
716
+ "step": 500
717
+ }
718
+ ],
719
+ "logging_steps": 5,
720
+ "max_steps": 6734,
721
+ "num_input_tokens_seen": 0,
722
+ "num_train_epochs": 1,
723
+ "save_steps": 100,
724
+ "total_flos": 7.031295252564541e+17,
725
+ "train_batch_size": 2,
726
+ "trial_name": null,
727
+ "trial_params": null
728
+ }