File size: 10,823 Bytes
ec98fa7 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 13412f0 a3a0080 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: BAAI/bge-small-en-v1.5
metrics:
- accuracy
widget:
- text: mostly works because of the universal themes , earnest performances ... and
excellent use of music by india 's popular gulzar and jagjit singh .
- text: in all the annals of the movies , few films have been this odd , inexplicable
and unpleasant .
- text: director charles stone iii applies more detail to the film 's music than to
the story line ; what 's best about drumline is its energy .
- text: there 's nothing exactly wrong here , but there 's not nearly enough that
's right .
- text: it 's a bad sign in a thriller when you instantly know whodunit .
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8621636463481603
name: Accuracy
---
# SetFit with BAAI/bge-small-en-v1.5
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | <ul><li>'a sensitive , modest comic tragedy that works as both character study and symbolic examination of the huge economic changes sweeping modern china .'</li><li>'the year 2002 has conjured up more coming-of-age stories than seem possible , but take care of my cat emerges as the very best of them .'</li><li>'amy and matthew have a bit of a phony relationship , but the film works in spite of it .'</li></ul> |
| 0 | <ul><li>'works on the whodunit level as its larger themes get lost in the murk of its own making'</li><li>"one of those strained caper movies that 's hardly any fun to watch and begins to vaporize from your memory minutes after it ends ."</li><li>"shunji iwai 's all about lily chou chou is a beautifully shot , but ultimately flawed film about growing up in japan ."</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8622 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Jorgeutd/setfit-bge-small-v1.5-sst2-50-shot")
# Run inference
preds = model("it 's a bad sign in a thriller when you instantly know whodunit .")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 21.31 | 50 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 50 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0031 | 1 | 0.2515 | - |
| 0.1567 | 50 | 0.2298 | - |
| 0.3135 | 100 | 0.2134 | - |
| 0.4702 | 150 | 0.0153 | - |
| 0.6270 | 200 | 0.0048 | - |
| 0.7837 | 250 | 0.0024 | - |
| 0.9404 | 300 | 0.0023 | - |
| 1.0972 | 350 | 0.0016 | - |
| 1.2539 | 400 | 0.0016 | - |
| 1.4107 | 450 | 0.001 | - |
| 1.5674 | 500 | 0.0013 | - |
| 1.7241 | 550 | 0.0008 | - |
| 1.8809 | 600 | 0.0008 | - |
| 2.0376 | 650 | 0.0007 | - |
| 2.1944 | 700 | 0.0008 | - |
| 2.3511 | 750 | 0.0008 | - |
| 2.5078 | 800 | 0.0007 | - |
| 2.6646 | 850 | 0.0006 | - |
| 2.8213 | 900 | 0.0006 | - |
| 2.9781 | 950 | 0.0005 | - |
| 3.1348 | 1000 | 0.0006 | - |
| 3.2915 | 1050 | 0.0006 | - |
| 3.4483 | 1100 | 0.0005 | - |
| 3.6050 | 1150 | 0.0005 | - |
| 3.7618 | 1200 | 0.0005 | - |
| 3.9185 | 1250 | 0.0005 | - |
| 4.0752 | 1300 | 0.0005 | - |
| 4.2320 | 1350 | 0.0004 | - |
| 4.3887 | 1400 | 0.0004 | - |
| 4.5455 | 1450 | 0.0004 | - |
| 4.7022 | 1500 | 0.0003 | - |
| 4.8589 | 1550 | 0.0006 | - |
| 5.0157 | 1600 | 0.0007 | - |
| 5.1724 | 1650 | 0.0004 | - |
| 5.3292 | 1700 | 0.0004 | - |
| 5.4859 | 1750 | 0.0004 | - |
| 5.6426 | 1800 | 0.0004 | - |
| 5.7994 | 1850 | 0.0003 | - |
| 5.9561 | 1900 | 0.0004 | - |
| 6.1129 | 1950 | 0.0003 | - |
| 6.2696 | 2000 | 0.0003 | - |
| 6.4263 | 2050 | 0.0005 | - |
| 6.5831 | 2100 | 0.0003 | - |
| 6.7398 | 2150 | 0.0003 | - |
| 6.8966 | 2200 | 0.0003 | - |
| 7.0533 | 2250 | 0.0003 | - |
| 7.2100 | 2300 | 0.0003 | - |
| 7.3668 | 2350 | 0.0003 | - |
| 7.5235 | 2400 | 0.0002 | - |
| 7.6803 | 2450 | 0.0003 | - |
| 7.8370 | 2500 | 0.0003 | - |
| 7.9937 | 2550 | 0.0003 | - |
| 8.1505 | 2600 | 0.0003 | - |
| 8.3072 | 2650 | 0.0003 | - |
| 8.4639 | 2700 | 0.0003 | - |
| 8.6207 | 2750 | 0.0003 | - |
| 8.7774 | 2800 | 0.0004 | - |
| 8.9342 | 2850 | 0.0002 | - |
| 9.0909 | 2900 | 0.0003 | - |
| 9.2476 | 2950 | 0.0004 | - |
| 9.4044 | 3000 | 0.0004 | - |
| 9.5611 | 3050 | 0.0003 | - |
| 9.7179 | 3100 | 0.0004 | - |
| 9.8746 | 3150 | 0.0003 | - |
### Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.6.1
- Transformers: 4.39.1
- PyTorch: 2.1.0
- Datasets: 2.18.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |