File size: 10,823 Bytes
ec98fa7
13412f0
 
 
 
 
 
a3a0080
13412f0
 
 
a3a0080
 
 
 
 
 
 
 
 
13412f0
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a0080
13412f0
 
a3a0080
13412f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a0080
 
 
 
13412f0
 
 
 
 
 
a3a0080
13412f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a0080
13412f0
 
 
a3a0080
13412f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a0080
13412f0
a3a0080
 
 
 
13412f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a0080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13412f0
 
a3a0080
13412f0
a3a0080
 
 
 
 
13412f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a0080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: BAAI/bge-small-en-v1.5
metrics:
- accuracy
widget:
- text: mostly works because of the universal themes , earnest performances ... and
    excellent use of music by india 's popular gulzar and jagjit singh .
- text: in all the annals of the movies , few films have been this odd , inexplicable
    and unpleasant .
- text: director charles stone iii applies more detail to the film 's music than to
    the story line ; what 's best about drumline is its energy .
- text: there 's nothing exactly wrong here , but there 's not nearly enough that
    's right .
- text: it 's a bad sign in a thriller when you instantly know whodunit .
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.8621636463481603
      name: Accuracy
---

# SetFit with BAAI/bge-small-en-v1.5

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                      |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | <ul><li>'a sensitive , modest comic tragedy that works as both character study and symbolic examination of the huge economic changes sweeping modern china .'</li><li>'the year 2002 has conjured up more coming-of-age stories than seem possible , but take care of my cat emerges as the very best of them .'</li><li>'amy and matthew have a bit of a phony relationship , but the film works in spite of it .'</li></ul> |
| 0     | <ul><li>'works on the whodunit level as its larger themes get lost in the murk of its own making'</li><li>"one of those strained caper movies that 's hardly any fun to watch and begins to vaporize from your memory minutes after it ends ."</li><li>"shunji iwai 's all about lily chou chou is a beautifully shot , but ultimately flawed film about growing up in japan ."</li></ul>                                     |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.8622   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Jorgeutd/setfit-bge-small-v1.5-sst2-50-shot")
# Run inference
preds = model("it 's a bad sign in a thriller when you instantly know whodunit .")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 21.31  | 50  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0031 | 1    | 0.2515        | -               |
| 0.1567 | 50   | 0.2298        | -               |
| 0.3135 | 100  | 0.2134        | -               |
| 0.4702 | 150  | 0.0153        | -               |
| 0.6270 | 200  | 0.0048        | -               |
| 0.7837 | 250  | 0.0024        | -               |
| 0.9404 | 300  | 0.0023        | -               |
| 1.0972 | 350  | 0.0016        | -               |
| 1.2539 | 400  | 0.0016        | -               |
| 1.4107 | 450  | 0.001         | -               |
| 1.5674 | 500  | 0.0013        | -               |
| 1.7241 | 550  | 0.0008        | -               |
| 1.8809 | 600  | 0.0008        | -               |
| 2.0376 | 650  | 0.0007        | -               |
| 2.1944 | 700  | 0.0008        | -               |
| 2.3511 | 750  | 0.0008        | -               |
| 2.5078 | 800  | 0.0007        | -               |
| 2.6646 | 850  | 0.0006        | -               |
| 2.8213 | 900  | 0.0006        | -               |
| 2.9781 | 950  | 0.0005        | -               |
| 3.1348 | 1000 | 0.0006        | -               |
| 3.2915 | 1050 | 0.0006        | -               |
| 3.4483 | 1100 | 0.0005        | -               |
| 3.6050 | 1150 | 0.0005        | -               |
| 3.7618 | 1200 | 0.0005        | -               |
| 3.9185 | 1250 | 0.0005        | -               |
| 4.0752 | 1300 | 0.0005        | -               |
| 4.2320 | 1350 | 0.0004        | -               |
| 4.3887 | 1400 | 0.0004        | -               |
| 4.5455 | 1450 | 0.0004        | -               |
| 4.7022 | 1500 | 0.0003        | -               |
| 4.8589 | 1550 | 0.0006        | -               |
| 5.0157 | 1600 | 0.0007        | -               |
| 5.1724 | 1650 | 0.0004        | -               |
| 5.3292 | 1700 | 0.0004        | -               |
| 5.4859 | 1750 | 0.0004        | -               |
| 5.6426 | 1800 | 0.0004        | -               |
| 5.7994 | 1850 | 0.0003        | -               |
| 5.9561 | 1900 | 0.0004        | -               |
| 6.1129 | 1950 | 0.0003        | -               |
| 6.2696 | 2000 | 0.0003        | -               |
| 6.4263 | 2050 | 0.0005        | -               |
| 6.5831 | 2100 | 0.0003        | -               |
| 6.7398 | 2150 | 0.0003        | -               |
| 6.8966 | 2200 | 0.0003        | -               |
| 7.0533 | 2250 | 0.0003        | -               |
| 7.2100 | 2300 | 0.0003        | -               |
| 7.3668 | 2350 | 0.0003        | -               |
| 7.5235 | 2400 | 0.0002        | -               |
| 7.6803 | 2450 | 0.0003        | -               |
| 7.8370 | 2500 | 0.0003        | -               |
| 7.9937 | 2550 | 0.0003        | -               |
| 8.1505 | 2600 | 0.0003        | -               |
| 8.3072 | 2650 | 0.0003        | -               |
| 8.4639 | 2700 | 0.0003        | -               |
| 8.6207 | 2750 | 0.0003        | -               |
| 8.7774 | 2800 | 0.0004        | -               |
| 8.9342 | 2850 | 0.0002        | -               |
| 9.0909 | 2900 | 0.0003        | -               |
| 9.2476 | 2950 | 0.0004        | -               |
| 9.4044 | 3000 | 0.0004        | -               |
| 9.5611 | 3050 | 0.0003        | -               |
| 9.7179 | 3100 | 0.0004        | -               |
| 9.8746 | 3150 | 0.0003        | -               |

### Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.6.1
- Transformers: 4.39.1
- PyTorch: 2.1.0
- Datasets: 2.18.0
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->