ppo-LunarLander-v2 / config.json
JoseAntonioGarciaRamirezfoufoo's picture
Upload PPO LunarLander-v2 trained agent
e39773c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d59291ec550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d59291ec5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d59291ec670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d59291ec700>", "_build": "<function ActorCriticPolicy._build at 0x7d59291ec790>", "forward": "<function ActorCriticPolicy.forward at 0x7d59291ec820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d59291ec8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d59291ec940>", "_predict": "<function ActorCriticPolicy._predict at 0x7d59291ec9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d59291eca60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d59291ecaf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d59291ecb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d592937bdc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693411198932560055, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0qx7xcS2+6DlsFuirGG7clgpi64tAcOQAAgD8AAIA/5XOEvjoORz9t+oo95TrSviiDSb4K/Ys9AAAAAAAAAADNlXU917xPu9TaFDxjJ4g8qzV2PIO2ar0AAIA/AACAP1rZ7732lBq6AbWiuoBR8rbsYTc6yz7AOQAAgD8AAIA/AMi6O4+eCLpeW8s2ll1HMvakrzoaIO+1AACAPwAAgD8zke693HFyPvRLMT6WW6W+kVFWPd6bKj0AAAAAAAAAAIAXer17cIe6f3ijsn+W+rC/PRK7JXQlMwAAgD8AAIA/QBklvj1iaTyFCmQ8ftQIvrq/JL4MohC/AACAPwAAgD8AnHw8kB9FP+w0AT0g0eK+47+FPIeZIjsAAAAAAAAAAM1oEr4Kvy27KUQFN5m94TO6ATM86rgftgAAgD8AAIA/MyoePgd7RT+m/3c+IyEWv5dQID6iIWo9AAAAAAAAAABTABa+jhUuP3lAFT522eq+yT04vLqUKj4AAAAAAAAAAIA/1L3hEJu6+pZzO2oJSDgHgrc6nA8augAAgD8AAAAAygeXPn2RZL10Cie7DnmlOf7iw76cgrc6AACAPwAAgD/NwY89jxIxuqq6m7aCSLSxSO4CO5r5uTUAAIA/AAAAAM1Tnj4XZjI/FTSuPrLiM7/Hj8c+jZ2RuQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEOPc32mHiMAWyUTSsBjAF0lEdAkiq3Jo0yg3V9lChoBkdAcJhOktVaOmgHTTgBaAhHQJIr0vAXVLB1fZQoaAZHQHG1sI/qxC9oB029AWgIR0CSLIIldC3PdX2UKGgGR0Bw46Ieo1k2aAdNUAFoCEdAki2pbD/EO3V9lChoBkdAcB8eGO+7DmgHTScDaAhHQJIuoxQBPsR1fZQoaAZHQHDFHkT6BRRoB01dAWgIR0CSQw0yP+4tdX2UKGgGR0By2DLyMDOkaAdN8QJoCEdAkkPgDFId2nV9lChoBkdAY+PTb349HWgHTegDaAhHQJJFX4Glhw51fZQoaAZHQGIiErGza9NoB03oA2gIR0CSRXRkmQbNdX2UKGgGR0BpP5dSl3yJaAdN6ANoCEdAkkYMt9QXRHV9lChoBkdAcIJZZB9kSWgHTcQBaAhHQJJHubExZdR1fZQoaAZHQHNbIacZtN1oB01jAWgIR0CSR+iPQv6CdX2UKGgGR0Bx6VrxiG34aAdNBAFoCEdAkkikPpY9xXV9lChoBkdAcFhJsfq5b2gHTWIBaAhHQJJKCpzcRDl1fZQoaAZHQHCcEH+qBEtoB03sAWgIR0CSSjFLFn7IdX2UKGgGR0BARWznied1aAdLkWgIR0CSS0gRsdkrdX2UKGgGR0BwFOekHlfaaAdNqAJoCEdAkkt/3evZAnV9lChoBkdAcNYSDyvs7mgHTVwBaAhHQJJOWtlqagF1fZQoaAZHQHKT4hIOH31oB03cAWgIR0CSUNCDEm6YdX2UKGgGR0Bx0vbrTpgUaAdNgAFoCEdAklF8xKxs23V9lChoBkdAcB+Pn0TURWgHS/VoCEdAklGZzYEns3V9lChoBkdAcSLeiBXjl2gHTdYBaAhHQJJR5JiAlOZ1fZQoaAZHQHI0tkauOjtoB00eAWgIR0CSVC24uscRdX2UKGgGR0ByFOD3/PxAaAdNIgFoCEdAklX5OrQw9XV9lChoBkdALJJGnXNC7mgHS41oCEdAklgBpUPxx3V9lChoBkdAcec0KZ2IPGgHTXQBaAhHQJJYFs2vStx1fZQoaAZHQHCGzLGJemhoB00EAWgIR0CSWC43m3fAdX2UKGgGR0ByJEeyRjjJaAdNIwFoCEdAklh0384xUXV9lChoBkdAQJzQZ4wAVGgHS55oCEdAklwno5ggHXV9lChoBkdAcIwVcD8tPGgHTXYBaAhHQJJciUTtb9t1fZQoaAZHQHLo0pAlfJFoB00EAmgIR0CSXKfg75mAdX2UKGgGR0BwpLgJkXk6aAdNyQFoCEdAkl6Un5SFXnV9lChoBkdAcgnFvQ4S6GgHTZYBaAhHQJJez15B1Ld1fZQoaAZHQHIlMQmNR3xoB01wAWgIR0CSX7Wl/H5rdX2UKGgGR0ByB0gW8AaOaAdNNQNoCEdAkmBuyVv/BHV9lChoBkdAccsxCIDYAmgHTUcBaAhHQJJggc1fmcR1fZQoaAZHQFBeeJpFkQRoB0vSaAhHQJJg3qkdmxt1fZQoaAZHQHGGjLr5ZbJoB00oAWgIR0CSY+LG7z06dX2UKGgGR0BvKvgDRtxdaAdL52gIR0CSZOvR7Z3+dX2UKGgGR0Byw2FAVwglaAdN2wFoCEdAkmWzAeq7y3V9lChoBkdAcSHpVjqfOGgHTZwBaAhHQJJm4mPYFq11fZQoaAZHQHOGEC3gDRtoB011AWgIR0CSZxuuzQeFdX2UKGgGR0BwDJL0z0pWaAdN/gFoCEdAkmd3LaEi+3V9lChoBkdAcjKHnU2DQWgHTYYBaAhHQJJndsj3VTd1fZQoaAZHQG4uSylenhtoB00xAWgIR0CSZ81vES/TdX2UKGgGR0Bx8w150KZ2aAdL/mgIR0CSZ/BzV+ZxdX2UKGgGR0BxakuK4x1xaAdNCgFoCEdAkmgQnH/953V9lChoBkdAbhSYb83uNWgHTQ0BaAhHQJJplnjABT51fZQoaAZHQHIa7or4FidoB02sAWgIR0CSas3VCojwdX2UKGgGR0BH1qMvRJEqaAdLmmgIR0CSa1QlruYydX2UKGgGR0BzBZfWtlqbaAdNcgFoCEdAkmyb1uivgXV9lChoBkdAcb28L8aXKWgHTX4BaAhHQJJtcOpbUw11fZQoaAZHQHF3JvxYq5NoB00aAWgIR0CSfg5CF9KFdX2UKGgGR0Bv894iX6ZZaAdNswFoCEdAkn44tQKrrHV9lChoBkdAccQoKD0162gHS+5oCEdAkn9CemNzbXV9lChoBkdAcP77MxGlRGgHTWkBaAhHQJJ/pyimEXd1fZQoaAZHQHJ/hjjJdSloB00cAWgIR0CSf/ehf0EpdX2UKGgGR0BxIal54W1uaAdNCQFoCEdAkoAJjYqXnnV9lChoBkdAcSapWFN+LGgHTUQBaAhHQJKALwZwXIl1fZQoaAZHQGX1mIKtxMpoB03oA2gIR0CSgFeIVM24dX2UKGgGR0Bw0Dg88s+WaAdNJwFoCEdAkoCXhn8KonV9lChoBkdAcbNl0YCQtGgHTRwBaAhHQJKA3D0lJH11fZQoaAZHQHLtKU3XI2hoB00HAWgIR0CSgckgwGnodX2UKGgGR0By7vL8rI5paAdNAAFoCEdAkoLNZvDP4XV9lChoBkdAclEic5Ke1GgHTRYBaAhHQJKEBhCtzS11fZQoaAZHQHGmPEsJ6Y5oB0v0aAhHQJKESmR/3Fl1fZQoaAZHQHGYUYwZflZoB00KAWgIR0CShjhGpda/dX2UKGgGR0BUyKzE74i5aAdLtWgIR0CShohufmLcdX2UKGgGR0Buekqaw2VFaAdNDQFoCEdAkob9pZfUnXV9lChoBkdAVKkk3S8aoGgHS5ZoCEdAkodmG7Bfr3V9lChoBkdASXSE384xUWgHS99oCEdAkofl8Ti84HV9lChoBkdAPPWbsniNsGgHS+doCEdAkogg2AG0NXV9lChoBkdAbUwDXe3x4WgHTRoBaAhHQJKJcWykbgl1fZQoaAZHQHDOz5O8CgdoB00qAmgIR0CSijMqjJuEdX2UKGgGR0Bw++j2zv7WaAdNCgFoCEdAkorwob4rSXV9lChoBkdAccGuPmxMWWgHTTIBaAhHQJKLVTwUg0V1fZQoaAZHQHEHMeXAuZloB02HAWgIR0CSjPEqDsdDdX2UKGgGR0BvRfJV81GcaAdNJQFoCEdAkpJ0XcgyM3V9lChoBkdAchj/m1YyPGgHTUYBaAhHQJKUL9rGipN1fZQoaAZHQHHIliay8jBoB0v4aAhHQJKUJl05lvt1fZQoaAZHQG+rLhaTwDxoB00VAWgIR0CSlVbbUPQOdX2UKGgGR0ByB1gG8mKJaAdN8wFoCEdAkpWB2OhkAnV9lChoBkdAcYdIqLCN0mgHTQcBaAhHQJKVnJ4jbBZ1fZQoaAZHQHDJGh24d6toB02SAWgIR0CSlmeGO+7EdX2UKGgGR0BxnlDKHO8kaAdNHwFoCEdAkpcaj3225XV9lChoBkdAcL4cRDkU9WgHTWsBaAhHQJKY/UTcqON1fZQoaAZHQHAeTYdyT6loB01tAWgIR0CSmWB0IToMdX2UKGgGR0BuhitozvZzaAdNDwFoCEdAkpnBJZntfHV9lChoBkdAcIo79Q40dmgHTSEBaAhHQJKbXux8lX11fZQoaAZHQG9RT0Yj0MBoB01mAWgIR0CSm6nJDE3sdX2UKGgGR0BtSa+De0ojaAdL9GgIR0CSntUm2LHddX2UKGgGR0BxnCfPHDJmaAdNFAFoCEdAkp8rxI8QqnV9lChoBkdAcaLcslLOA2gHTTgBaAhHQJKffKoybhF1fZQoaAZHQHID55qubI9oB03vAWgIR0CSn6T6BRQ8dX2UKGgGR0BvFNOfukULaAdL92gIR0CSoWlI3BHkdX2UKGgGR0BwhsoPTXrdaAdNagFoCEdAkqPkqx1PnHV9lChoBkdAcTUPo3aSLmgHTX4BaAhHQJKj/exfOUt1fZQoaAZHQHFr6KHfuTloB01jA2gIR0CSpE2dNFjNdX2UKGgGR0BxUeJtSAH3aAdL+mgIR0CSpEuNgjQidX2UKGgGR0BwzuGVRk3CaAdNDwFoCEdAkqV+4TbnHXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}