from typing import Dict, List, Any from setfit import SetFitModel class EndpointHandler: def __init__(self, path=""): # load model self.model = SetFitModel.from_pretrained(path) # ag_news id to label mapping self.id2label = {0: "Absent", 1: "Present"} # def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: # """ # data args: # inputs (:obj: `str`) # Return: # A :obj:`list` | `dict`: will be serialized and returned # """ # # get inputs # inputs = data.pop("inputs", data) # if isinstance(inputs, str): # inputs = [inputs] # # run normal prediction # scores = self.model.predict_proba(inputs)[0] # return [{"label": self.id2label[i], "score": score.item()} for i, score in enumerate(scores)] def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `List[str]`) - List of strings Return: A :obj:`list` of dicts: each dict contains 'label' and 'score' for each input string """ # get inputs inputs = data.pop("inputs", data) if not isinstance(inputs, list): raise ValueError("Input must be a list of strings") # run normal prediction all_scores = self.model.predict_proba(inputs) # This returns a list of score arrays # Format the results for each input string results = [] for scores in all_scores: results.append([ {"label": self.id2label[i], "score": score.item()} for i, score in enumerate(scores) ]) return results