Commit
·
3fb0d79
1
Parent(s):
29cf292
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: model_broadclass_onSet2
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# model_broadclass_onSet2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5931
|
21 |
+
- 0 Precision: 1.0
|
22 |
+
- 0 Recall: 0.9615
|
23 |
+
- 0 F1-score: 0.9804
|
24 |
+
- 0 Support: 26
|
25 |
+
- 1 Precision: 0.9730
|
26 |
+
- 1 Recall: 0.9231
|
27 |
+
- 1 F1-score: 0.9474
|
28 |
+
- 1 Support: 39
|
29 |
+
- 2 Precision: 1.0
|
30 |
+
- 2 Recall: 1.0
|
31 |
+
- 2 F1-score: 1.0
|
32 |
+
- 2 Support: 19
|
33 |
+
- 3 Precision: 0.8125
|
34 |
+
- 3 Recall: 1.0
|
35 |
+
- 3 F1-score: 0.8966
|
36 |
+
- 3 Support: 13
|
37 |
+
- Accuracy: 0.9588
|
38 |
+
- Macro avg Precision: 0.9464
|
39 |
+
- Macro avg Recall: 0.9712
|
40 |
+
- Macro avg F1-score: 0.9561
|
41 |
+
- Macro avg Support: 97
|
42 |
+
- Weighted avg Precision: 0.9640
|
43 |
+
- Weighted avg Recall: 0.9588
|
44 |
+
- Weighted avg F1-score: 0.9597
|
45 |
+
- Weighted avg Support: 97
|
46 |
+
- Wer: 0.6924
|
47 |
+
- Mtrix: [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 36, 0, 3], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]
|
48 |
+
|
49 |
+
## Model description
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Intended uses & limitations
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training and evaluation data
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
+
|
63 |
+
### Training hyperparameters
|
64 |
+
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 0.0003
|
67 |
+
- train_batch_size: 8
|
68 |
+
- eval_batch_size: 8
|
69 |
+
- seed: 42
|
70 |
+
- gradient_accumulation_steps: 2
|
71 |
+
- total_train_batch_size: 16
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- lr_scheduler_warmup_steps: 200
|
75 |
+
- num_epochs: 80
|
76 |
+
- mixed_precision_training: Native AMP
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | 2 Precision | 2 Recall | 2 F1-score | 2 Support | 3 Precision | 3 Recall | 3 F1-score | 3 Support | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support | Wer | Mtrix |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:------:|:---------------------------------------------------------------------------------------:|
|
82 |
+
| 2.3566 | 4.16 | 100 | 2.1836 | 0.2680 | 1.0 | 0.4228 | 26 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 13 | 0.2680 | 0.0670 | 0.25 | 0.1057 | 97 | 0.0718 | 0.2680 | 0.1133 | 97 | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]] |
|
83 |
+
| 2.2923 | 8.33 | 200 | 2.1159 | 0.2680 | 1.0 | 0.4228 | 26 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 13 | 0.2680 | 0.0670 | 0.25 | 0.1057 | 97 | 0.0718 | 0.2680 | 0.1133 | 97 | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]] |
|
84 |
+
| 1.9868 | 12.49 | 300 | 1.9923 | 0.2680 | 1.0 | 0.4228 | 26 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 13 | 0.2680 | 0.0670 | 0.25 | 0.1057 | 97 | 0.0718 | 0.2680 | 0.1133 | 97 | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]] |
|
85 |
+
| 1.7313 | 16.65 | 400 | 1.6081 | 0.2680 | 1.0 | 0.4228 | 26 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 13 | 0.2680 | 0.0670 | 0.25 | 0.1057 | 97 | 0.0718 | 0.2680 | 0.1133 | 97 | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]] |
|
86 |
+
| 1.6688 | 20.82 | 500 | 1.5971 | 0.2680 | 1.0 | 0.4228 | 26 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 13 | 0.2680 | 0.0670 | 0.25 | 0.1057 | 97 | 0.0718 | 0.2680 | 0.1133 | 97 | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]] |
|
87 |
+
| 1.5888 | 24.98 | 600 | 1.6098 | 0.2680 | 1.0 | 0.4228 | 26 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 13 | 0.2680 | 0.0670 | 0.25 | 0.1057 | 97 | 0.0718 | 0.2680 | 0.1133 | 97 | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]] |
|
88 |
+
| 1.5986 | 29.16 | 700 | 1.6984 | 0.2680 | 1.0 | 0.4228 | 26 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 13 | 0.2680 | 0.0670 | 0.25 | 0.1057 | 97 | 0.0718 | 0.2680 | 0.1133 | 97 | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]] |
|
89 |
+
| 1.5437 | 33.33 | 800 | 1.4933 | 0.2680 | 1.0 | 0.4228 | 26 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 13 | 0.2680 | 0.0670 | 0.25 | 0.1057 | 97 | 0.0718 | 0.2680 | 0.1133 | 97 | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]] |
|
90 |
+
| 1.1358 | 37.49 | 900 | 1.1118 | 0.2680 | 1.0 | 0.4228 | 26 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 19 | 0.0 | 0.0 | 0.0 | 13 | 0.2680 | 0.0670 | 0.25 | 0.1057 | 97 | 0.0718 | 0.2680 | 0.1133 | 97 | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]] |
|
91 |
+
| 0.983 | 41.65 | 1000 | 1.0538 | 0.3171 | 1.0 | 0.4815 | 26 | 1.0 | 0.0256 | 0.05 | 39 | 1.0 | 0.3158 | 0.4800 | 19 | 0.875 | 0.5385 | 0.6667 | 13 | 0.4124 | 0.7980 | 0.4700 | 0.4195 | 97 | 0.8002 | 0.4124 | 0.3325 | 97 | 0.9732 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 37, 1, 0, 1], [2, 13, 0, 6, 0], [3, 6, 0, 0, 7]] |
|
92 |
+
| 0.96 | 45.82 | 1100 | 0.9324 | 0.4561 | 1.0 | 0.6265 | 26 | 1.0 | 0.3846 | 0.5556 | 39 | 1.0 | 0.6316 | 0.7742 | 19 | 1.0 | 1.0 | 1.0 | 13 | 0.6804 | 0.8640 | 0.7540 | 0.7391 | 97 | 0.8542 | 0.6804 | 0.6770 | 97 | 0.9510 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 24, 15, 0, 0], [2, 7, 0, 12, 0], [3, 0, 0, 0, 13]] |
|
93 |
+
| 0.9569 | 49.98 | 1200 | 0.9106 | 0.52 | 1.0 | 0.6842 | 26 | 1.0 | 0.6410 | 0.7813 | 39 | 1.0 | 0.6316 | 0.7742 | 19 | 1.0 | 0.7692 | 0.8696 | 13 | 0.7526 | 0.88 | 0.7605 | 0.7773 | 97 | 0.8713 | 0.7526 | 0.7657 | 97 | 0.9343 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 14, 25, 0, 0], [2, 7, 0, 12, 0], [3, 3, 0, 0, 10]] |
|
94 |
+
| 0.943 | 54.16 | 1300 | 0.9142 | 0.7879 | 1.0 | 0.8814 | 26 | 1.0 | 0.8205 | 0.9014 | 39 | 1.0 | 0.9474 | 0.9730 | 19 | 0.9286 | 1.0 | 0.9630 | 13 | 0.9175 | 0.9291 | 0.9420 | 0.9297 | 97 | 0.9336 | 0.9175 | 0.9183 | 97 | 0.9242 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 6, 32, 0, 1], [2, 1, 0, 18, 0], [3, 0, 0, 0, 13]] |
|
95 |
+
| 0.9177 | 58.33 | 1400 | 0.9201 | 0.7879 | 1.0 | 0.8814 | 26 | 1.0 | 0.7692 | 0.8696 | 39 | 1.0 | 1.0 | 1.0 | 19 | 0.8667 | 1.0 | 0.9286 | 13 | 0.9072 | 0.9136 | 0.9423 | 0.9199 | 97 | 0.9253 | 0.9072 | 0.9062 | 97 | 0.9197 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 7, 30, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]] |
|
96 |
+
| 0.873 | 62.49 | 1500 | 0.8556 | 0.8387 | 1.0 | 0.9123 | 26 | 1.0 | 0.8718 | 0.9315 | 39 | 1.0 | 0.9474 | 0.9730 | 19 | 0.9286 | 1.0 | 0.9630 | 13 | 0.9381 | 0.9418 | 0.9548 | 0.9449 | 97 | 0.9472 | 0.9381 | 0.9387 | 97 | 0.9293 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 4, 34, 0, 1], [2, 1, 0, 18, 0], [3, 0, 0, 0, 13]] |
|
97 |
+
| 0.798 | 66.65 | 1600 | 0.8133 | 0.8966 | 1.0 | 0.9455 | 26 | 1.0 | 0.8974 | 0.9459 | 39 | 1.0 | 1.0 | 1.0 | 19 | 0.9286 | 1.0 | 0.9630 | 13 | 0.9588 | 0.9563 | 0.9744 | 0.9636 | 97 | 0.9627 | 0.9588 | 0.9587 | 97 | 0.9071 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 3, 35, 0, 1], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]] |
|
98 |
+
| 0.7299 | 70.82 | 1700 | 0.7332 | 1.0 | 0.9615 | 0.9804 | 26 | 0.9744 | 0.9744 | 0.9744 | 39 | 1.0 | 1.0 | 1.0 | 19 | 0.9286 | 1.0 | 0.9630 | 13 | 0.9794 | 0.9757 | 0.9840 | 0.9794 | 97 | 0.9801 | 0.9794 | 0.9795 | 97 | 0.8636 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 38, 0, 1], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]] |
|
99 |
+
| 0.6432 | 74.98 | 1800 | 0.6808 | 1.0 | 0.9615 | 0.9804 | 26 | 0.9730 | 0.9231 | 0.9474 | 39 | 1.0 | 1.0 | 1.0 | 19 | 0.8125 | 1.0 | 0.8966 | 13 | 0.9588 | 0.9464 | 0.9712 | 0.9561 | 97 | 0.9640 | 0.9588 | 0.9597 | 97 | 0.7758 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 36, 0, 3], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]] |
|
100 |
+
| 0.6067 | 79.16 | 1900 | 0.5931 | 1.0 | 0.9615 | 0.9804 | 26 | 0.9730 | 0.9231 | 0.9474 | 39 | 1.0 | 1.0 | 1.0 | 19 | 0.8125 | 1.0 | 0.8966 | 13 | 0.9588 | 0.9464 | 0.9712 | 0.9561 | 97 | 0.9640 | 0.9588 | 0.9597 | 97 | 0.6924 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 36, 0, 3], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]] |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.25.1
|
106 |
+
- Pytorch 1.13.0+cu116
|
107 |
+
- Datasets 2.8.0
|
108 |
+
- Tokenizers 0.13.2
|