File size: 2,108 Bytes
c7d325b 8dad5d4 c7d325b 8dad5d4 c7d325b 8dad5d4 c7d325b 8dad5d4 c7d325b 8dad5d4 c7d325b 8dad5d4 c7d325b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
base_model: openai/whisper-base
datasets:
- Jpep26/NoErrorDataset
language:
- ko
library_name: transformers
license: apache-2.0
metrics:
- wer
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Test
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: NoErrorDataset
type: Jpep26/NoErrorDataset
args: 'config: ko, split: valid'
metrics:
- type: wer
value: 0.48766120044578887
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Test
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the NoErrorDataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6020
- Cer: 0.4962
- Wer: 0.4877
- Mean: 0.4919
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Mean |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|
| 2.3893 | 0.3817 | 50 | 2.0607 | 0.4421 | 0.7020 | 0.5720 |
| 1.2402 | 0.7634 | 100 | 1.0999 | 0.3408 | 0.5773 | 0.4591 |
| 0.7512 | 1.1450 | 150 | 0.7303 | 0.7268 | 0.5418 | 0.6343 |
| 0.593 | 1.5267 | 200 | 0.6020 | 0.4962 | 0.4877 | 0.4919 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.19.1
|