--- base_model: openai/whisper-base datasets: - Jpep26/NoErrorDataset language: - ko library_name: transformers license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Test results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: NoErrorDataset type: Jpep26/NoErrorDataset args: 'config: ko, split: valid' metrics: - type: wer value: 0.48766120044578887 name: Wer --- # Test This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the NoErrorDataset dataset. It achieves the following results on the evaluation set: - Loss: 0.6020 - Cer: 0.4962 - Wer: 0.4877 - Mean: 0.4919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Mean | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:| | 2.3893 | 0.3817 | 50 | 2.0607 | 0.4421 | 0.7020 | 0.5720 | | 1.2402 | 0.7634 | 100 | 1.0999 | 0.3408 | 0.5773 | 0.4591 | | 0.7512 | 1.1450 | 150 | 0.7303 | 0.7268 | 0.5418 | 0.6343 | | 0.593 | 1.5267 | 200 | 0.6020 | 0.4962 | 0.4877 | 0.4919 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.19.1