ppo-LunarLander-v2 / config.json
Jsancs's picture
LunarLander-v2 trained agent
eb28df3 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7aef03590b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7aef03590c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7aef03590ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7aef03590d30>", "_build": "<function ActorCriticPolicy._build at 0x7aef03590dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7aef03590e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7aef03590ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7aef03590f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7aef03591000>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7aef03591090>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7aef03591120>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7aef035911b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7aef0352e0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716744076184701458, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaruD5B90g/RfN0vp9KE78c840+xlOUvgAAAAAAAAAAmkt5vY8OF7pak0e5ImugMjNcjruOkGk4AACAPwAAAADm1Ay+rQsyPnKOeD7qIVm+jtquPe5bYbsAAAAAAAAAAACQXL1PrjK8pQIyPcBFFr1YD5E9SDX5PQAAgD8AAIA/TZE7vdkqDT6rp6g+ylcPvuK3ej55EoG8AAAAAAAAAABNxXs9luj2PsP6070vDay+0sTUvLu5970AAAAAAAAAAGYFGT5cTaU/LbAWPwqGAb90hGw++mkXPwAAAAAAAAAApmU9vk70wD4G6NM+hA1VvpkGg7263Ec+AAAAAAAAAADNLZg9JLKkPm4NJr4vTMO+Qi2WvTucJD0AAAAAAAAAACAjmb7fg5Y+6mcXPwzDSr4XYXO7dhOwPgAAAAAAAAAAQK3bvaPnGD3angc+m88Gvo+fa73coJu9AAAAAAAAAAAzwyY8H+mDuxmDizyPb9s7/qenvEbDyDwAAIA/AACAPzOr8btqiLU/RT4/v405pj4RIQw8I0ctPgAAAAAAAAAAMwYRPb7VhD7QOVm+KX2FvpDd4b3TUG69AAAAAAAAAABN52490npjP8pbX70MGwW/RiGtPU0N/b0AAAAAAAAAACZqgr0f+ue7el9yPIW8kjwCqko9FrF1vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAmnl0YCQuMAWyUTSYBjAF0lEdAkojccMmWt3V9lChoBkdAcBq9ehPCVWgHTQMBaAhHQJKJZJsfq5d1fZQoaAZHQHLDGM4tHx1oB0vwaAhHQJKJ3pW3jMp1fZQoaAZHQHGhtkBjnV5oB00VAWgIR0CSjeOpbUw0dX2UKGgGR0BxjvpgTh5xaAdNNAJoCEdAko6Vx4ptrXV9lChoBkdAciZwGW2PUGgHTREBaAhHQJKPmWjXWe91fZQoaAZHQHMexMrVe8hoB02rAWgIR0CSj6RQJokBdX2UKGgGR0By1dmwqy4XaAdNeQFoCEdAkpA5y+6AfHV9lChoBkdAc3j4Y77sOWgHS/5oCEdAkpFxh2GIsXV9lChoBkdAcRVL1mJ3xGgHTQgBaAhHQJKSHbVSXMR1fZQoaAZHQHKALWRRuTBoB00oAmgIR0CSkwU5dWyUdX2UKGgGR0Bx4ajZcs19aAdNQgFoCEdAkpOPUnXumnV9lChoBkdAcbnyBTXJ5mgHTREBaAhHQJKT79aUzKt1fZQoaAZHQHFv4Ajps41oB00PAWgIR0CSlKmjCYTkdX2UKGgGR0By5DRD1GsnaAdNiwFoCEdAkpWi9AX2unV9lChoBkdAcFAfPomoi2gHTXQBaAhHQJKWMScslLR1fZQoaAZHQEpNcbBGhEloB0ueaAhHQJKW4vvjOs11fZQoaAZHQG3Fh/ZuhsZoB03YAWgIR0CSmFi7kGRndX2UKGgGR0BxbGrzXjEOaAdNCgJoCEdAkpiwsoUi6nV9lChoBkdAcY8Mglnh9GgHTRUBaAhHQJKZ9ZIQOFx1fZQoaAZHQHI3Vyq+8GtoB0vMaAhHQJKbKk/KQq91fZQoaAZHQHI0YEB8x9JoB007AWgIR0CSnAfdhy80dX2UKGgGR0BxmhmpVCHAaAdL/mgIR0CSnES9/SYxdX2UKGgGR0BxxodsBQvYaAdNeAFoCEdAkpzhlQMx5HV9lChoBkdAcLYqrBCUo2gHTScBaAhHQJKdF/J/5L11fZQoaAZHQGzqdM0xdptoB0vYaAhHQJKdQoScslN1fZQoaAZHQHDZPywwCbNoB01DAWgIR0CSnZULUkOadX2UKGgGR0BwUwSpR4yHaAdNCgJoCEdAkp3ZKJ2t+3V9lChoBkdAcKmZdfLLZGgHTXcBaAhHQJKeUAjps411fZQoaAZHQHJynwPRRdhoB00eAWgIR0CSnlreqJdjdX2UKGgGR0ByoZhVlwtKaAdNUgFoCEdAkqA8i4axYHV9lChoBkdAcaMWnTAnD2gHTQgBaAhHQJKgbQXyiEh1fZQoaAZHQHAVNBnjABVoB01RAWgIR0CSoSoVEd/8dX2UKGgGR0Bzl7VjI7vHaAdL/mgIR0CSo8r/KhcrdX2UKGgGR0Bwxdm5DqnnaAdNOgFoCEdAkqTldTo+wHV9lChoBkdAcji9LYf4h2gHS/xoCEdAkqU/Nqxkd3V9lChoBkdAcR6cABDG+GgHTQIBaAhHQJKmj0163RZ1fZQoaAZHQHDXkcfeUINoB00UAWgIR0CSppoexOcldX2UKGgGR0Bxcu1Aqur7aAdNBgFoCEdAkqat0V8CxXV9lChoBkdAcjTz3RG+bmgHTTYBaAhHQJKnF+tr9EV1fZQoaAZHQHCCy83++/RoB03KAWgIR0CSp3UwSJ0odX2UKGgGR0BumxxHXmNjaAdNZgFoCEdAkqd2BjFyaXV9lChoBkdAbaVbKRuCPWgHTaMBaAhHQJKnfLdN34d1fZQoaAZHQG7ARxT850doB0vuaAhHQJKoKmP5pJx1fZQoaAZHQHMugYLsrupoB013AWgIR0CSqI4e9zwMdX2UKGgGR0BzIinMt9QXaAdNBwFoCEdAkrpGuxKQJXV9lChoBkdAbz8zZ6D5CWgHS/hoCEdAkrqM6aLGaXV9lChoBkdAcc3grpaA4GgHTawBaAhHQJK7XsKLKmt1fZQoaAZHQHO02U4aP0ZoB00AAWgIR0CSvb2W6bvxdX2UKGgGR0BwR6RwIdELaAdL8WgIR0CSv4oVVPvbdX2UKGgGR0BxfkpKBd2QaAdNAAFoCEdAkr+8gEEDAHV9lChoBkdAb/O/mDDjzmgHTVABaAhHQJLABIWgvlF1fZQoaAZHQHHQrpJPIn1oB00WAWgIR0CSwKCMglnidX2UKGgGR0BwN3hZQpF1aAdNAQFoCEdAksDMAvL5h3V9lChoBkdAco3ai9IwumgHS8loCEdAksFT3h4t6HV9lChoBkdAcGtjKgZjx2gHTQ4BaAhHQJLBUlZ5iVl1fZQoaAZHQHObpUtI065oB0v7aAhHQJLBnalDWsl1fZQoaAZHQHJFdke6qbVoB00aAWgIR0CSwc/XGwRodX2UKGgGR0ByfBWPtD2KaAdL+2gIR0CSwiYzSCvpdX2UKGgGR0BxLx2t+1BuaAdNYwFoCEdAksJCZ8a4t3V9lChoBkdAckjvkRzzVmgHS+hoCEdAksNyhnJ1aHV9lChoBkdAcZH/t6X0G2gHTRYBaAhHQJLDjcVQAMl1fZQoaAZHQHFcZTVDrqtoB0vQaAhHQJLFuvllsgx1fZQoaAZHQGD9gLy+YdBoB03oA2gIR0CSxiDpC8e0dX2UKGgGR0BST5taY/mlaAdLiWgIR0CSyMSQo1DTdX2UKGgGR0BSWlo11nuiaAdLvWgIR0CSyXGucMEzdX2UKGgGR0Bz1a/cnE2paAdL3WgIR0CSyhqQiiZfdX2UKGgGR0Bwqqois4kvaAdL+WgIR0CSywQT238XdX2UKGgGR0Bw1WcmShalaAdNIgFoCEdAkstk61b7j3V9lChoBkdAcvEyPdVNpWgHTTQBaAhHQJLLzspobn51fZQoaAZHQHB9bwF1SwZoB00iAWgIR0CSy+FK02LpdX2UKGgGR0BwjnC53C9AaAdNOgFoCEdAkszKLn9vTHV9lChoBkdAca9T5ftx/GgHTUgBaAhHQJLNraakRBh1fZQoaAZHQHDcFvybx3FoB00XAWgIR0CSzjefI0ZWdX2UKGgGR0Bxywo3Jgb7aAdNZgFoCEdAks8CFbmlqXV9lChoBkdAcIP+ajN6gWgHS+xoCEdAks8LJW/8EXV9lChoBkdAVB4x0uDjBGgHS6NoCEdAks86IFeOXHV9lChoBkdAchx0rK/202gHTbEBaAhHQJLPo+HJtBR1fZQoaAZHQHKFEBbOeJ5oB00eAWgIR0CS0CPWQOnVdX2UKGgGR0Bw1BoRIz3zaAdNlwFoCEdAktCY68xsVXV9lChoBkdAcyMzOHFglWgHS9RoCEdAktDcscyWRnV9lChoBkdAb8niEQGwA2gHS+5oCEdAktLKTbFju3V9lChoBkdAcGyIHTqjamgHS/5oCEdAktLYiosI3XV9lChoBkdAb7lsvZh8Y2gHTSYBaAhHQJLTvuLJjlR1fZQoaAZHQG2KLrPdEb5oB0vYaAhHQJLUSxhUipx1fZQoaAZHQHMsGr4nF5xoB00HAWgIR0CS1TQfIS13dX2UKGgGR0BxIXB42S+yaAdNQQFoCEdAktU4c/+sHXV9lChoBkdAbzZViF0xM2gHS/hoCEdAktYTebd8A3V9lChoBkdAb/15yEL6UWgHTQUBaAhHQJLWq8dxQzl1fZQoaAZHQHKUrVJ+UhVoB01SAWgIR0CS1qg1m8NAdX2UKGgGR0BumW/tY0VKaAdL9mgIR0CS1zijtXxOdX2UKGgGR0BvYZZEDyOJaAdNKgFoCEdAkteDdYW+G3V9lChoBkdAcGHEHdGiH2gHS+5oCEdAktfT6ab4J3V9lChoBkdAUJK97F85S2gHS41oCEdAktf1BQemvXV9lChoBkdAYwTZdOZb6mgHTegDaAhHQJLYg2XLNfR1fZQoaAZHQHKIwpSaVlhoB0vIaAhHQJLYspON5t51fZQoaAZHQHC1/eDWbw1oB01DAWgIR0CS2NMEzO5bdX2UKGgGR0BTCs580DU3aAdL32gIR0CS2UY/FBIGdX2UKGgGR0BuE7qrzXjEaAdNXwFoCEdAktpohIOH33V9lChoBkdAczud4FA3UGgHS9FoCEdAktrqUiY9gXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}