upload agent_walker
Browse files- README.md +27 -194
- Walker/Walker-28499616.onnx +3 -0
- Walker/Walker-28499616.pt +3 -0
- Walker/Walker-28999814.onnx +3 -0
- Walker/Walker-28999814.pt +3 -0
- Walker/Walker-29499968.onnx +3 -0
- Walker/Walker-29499968.pt +3 -0
- Walker/Walker-29999516.onnx +3 -0
- Walker/Walker-29999516.pt +3 -0
- Walker/Walker-30000516.onnx +3 -0
- Walker/Walker-30000516.pt +3 -0
- Walker/checkpoint.pt +3 -0
- Walker/events.out.tfevents.1700726288.Scar17SE_BK.47376.0 +3 -0
- config.json +1 -0
- configuration.yaml +78 -0
- run_logs/timers.json +320 -0
- run_logs/training_status.json +65 -0
README.md
CHANGED
@@ -1,202 +1,35 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
-
#
|
|
|
|
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
<!-- Provide a longer summary of what this model is. -->
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
- **Developed by:** [More Information Needed]
|
22 |
-
- **Funded by [optional]:** [More Information Needed]
|
23 |
-
- **Shared by [optional]:** [More Information Needed]
|
24 |
-
- **Model type:** [More Information Needed]
|
25 |
-
- **Language(s) (NLP):** [More Information Needed]
|
26 |
-
- **License:** [More Information Needed]
|
27 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
28 |
-
|
29 |
-
### Model Sources [optional]
|
30 |
-
|
31 |
-
<!-- Provide the basic links for the model. -->
|
32 |
-
|
33 |
-
- **Repository:** [More Information Needed]
|
34 |
-
- **Paper [optional]:** [More Information Needed]
|
35 |
-
- **Demo [optional]:** [More Information Needed]
|
36 |
-
|
37 |
-
## Uses
|
38 |
-
|
39 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
40 |
-
|
41 |
-
### Direct Use
|
42 |
-
|
43 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
44 |
-
|
45 |
-
[More Information Needed]
|
46 |
-
|
47 |
-
### Downstream Use [optional]
|
48 |
-
|
49 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
50 |
-
|
51 |
-
[More Information Needed]
|
52 |
-
|
53 |
-
### Out-of-Scope Use
|
54 |
-
|
55 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
56 |
-
|
57 |
-
[More Information Needed]
|
58 |
-
|
59 |
-
## Bias, Risks, and Limitations
|
60 |
-
|
61 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
62 |
-
|
63 |
-
[More Information Needed]
|
64 |
-
|
65 |
-
### Recommendations
|
66 |
-
|
67 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
68 |
-
|
69 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
70 |
-
|
71 |
-
## How to Get Started with the Model
|
72 |
-
|
73 |
-
Use the code below to get started with the model.
|
74 |
-
|
75 |
-
[More Information Needed]
|
76 |
-
|
77 |
-
## Training Details
|
78 |
-
|
79 |
-
### Training Data
|
80 |
-
|
81 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
82 |
-
|
83 |
-
[More Information Needed]
|
84 |
-
|
85 |
-
### Training Procedure
|
86 |
-
|
87 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
88 |
-
|
89 |
-
#### Preprocessing [optional]
|
90 |
-
|
91 |
-
[More Information Needed]
|
92 |
-
|
93 |
-
|
94 |
-
#### Training Hyperparameters
|
95 |
-
|
96 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
97 |
-
|
98 |
-
#### Speeds, Sizes, Times [optional]
|
99 |
-
|
100 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
101 |
-
|
102 |
-
[More Information Needed]
|
103 |
-
|
104 |
-
## Evaluation
|
105 |
-
|
106 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
107 |
-
|
108 |
-
### Testing Data, Factors & Metrics
|
109 |
-
|
110 |
-
#### Testing Data
|
111 |
-
|
112 |
-
<!-- This should link to a Dataset Card if possible. -->
|
113 |
-
|
114 |
-
[More Information Needed]
|
115 |
-
|
116 |
-
#### Factors
|
117 |
-
|
118 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
119 |
-
|
120 |
-
[More Information Needed]
|
121 |
-
|
122 |
-
#### Metrics
|
123 |
-
|
124 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
125 |
-
|
126 |
-
[More Information Needed]
|
127 |
-
|
128 |
-
### Results
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
#### Summary
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
## Model Examination [optional]
|
137 |
-
|
138 |
-
<!-- Relevant interpretability work for the model goes here -->
|
139 |
-
|
140 |
-
[More Information Needed]
|
141 |
-
|
142 |
-
## Environmental Impact
|
143 |
-
|
144 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
145 |
-
|
146 |
-
Carbon emissions can be estimated using the.
|
147 |
-
|
148 |
-
- **Hardware Type:** [More Information Needed]
|
149 |
-
- **Hours used:** [More Information Needed]
|
150 |
-
- **Cloud Provider:** [More Information Needed]
|
151 |
-
- **Compute Region:** [More Information Needed]
|
152 |
-
- **Carbon Emitted:** [More Information Needed]
|
153 |
-
|
154 |
-
## Technical Specifications [optional]
|
155 |
-
|
156 |
-
### Model Architecture and Objective
|
157 |
-
|
158 |
-
[More Information Needed]
|
159 |
-
|
160 |
-
### Compute Infrastructure
|
161 |
-
|
162 |
-
[More Information Needed]
|
163 |
-
|
164 |
-
#### Hardware
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
#### Software
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
## Citation [optional]
|
173 |
-
|
174 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
175 |
-
|
176 |
-
**BibTeX:**
|
177 |
-
|
178 |
-
[More Information Needed]
|
179 |
-
|
180 |
-
**APA:**
|
181 |
-
|
182 |
-
[More Information Needed]
|
183 |
-
|
184 |
-
## Glossary [optional]
|
185 |
-
|
186 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
187 |
-
|
188 |
-
[More Information Needed]
|
189 |
-
|
190 |
-
## More Information [optional]
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## Model Card Authors [optional]
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## Model Card Contact
|
199 |
-
|
200 |
-
[More Information Needed]
|
201 |
|
|
|
|
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: ml-agents
|
3 |
+
tags:
|
4 |
+
- Walker
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- ML-Agents-Walker
|
8 |
---
|
9 |
|
10 |
+
# **ppo** Agent playing **Walker**
|
11 |
+
This is a trained model of a **ppo** agent playing **Walker**
|
12 |
+
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
|
13 |
|
14 |
+
## Usage (with ML-Agents)
|
15 |
+
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
|
16 |
|
17 |
+
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
|
18 |
+
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
|
19 |
+
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
|
20 |
+
- A *longer tutorial* to understand how works ML-Agents:
|
21 |
+
https://huggingface.co/learn/deep-rl-course/unit5/introduction
|
22 |
|
23 |
+
### Resume the training
|
24 |
+
```bash
|
25 |
+
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
|
26 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
### Watch your Agent play
|
29 |
+
You can watch your agent **playing directly in your browser**
|
30 |
|
31 |
+
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
|
32 |
+
2. Step 1: Find your model_id: Juicy1122/1124RL
|
33 |
+
3. Step 2: Select your *.nn /*.onnx file
|
34 |
+
4. Click on Watch the agent play 👀
|
35 |
+
|
Walker/Walker-28499616.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:839a7e12053728c167a4fb78f8dc61e7cfb7779de1d4a332d8a37f0122bab4f7
|
3 |
+
size 824597
|
Walker/Walker-28499616.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29c7d5dbf052cefc3a761df948832db0ac9f6c102616b1aba1f0dd8f1a9468b9
|
3 |
+
size 4811915
|
Walker/Walker-28999814.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b461c3682dc5aefe41e77a11e53f01bedca931c99b4b4169fb8f46e3f0813f0
|
3 |
+
size 824597
|
Walker/Walker-28999814.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae431de927c4ee5ead93d98fdccef9ddfd0770c624b88f65784120e2c820e592
|
3 |
+
size 4811915
|
Walker/Walker-29499968.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:940b3b8d232adc479018f3a5fb2cdf8a23072d6f0b0a9a5e41eb89dcbc076caf
|
3 |
+
size 824597
|
Walker/Walker-29499968.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c08c6b489e0a5036825090173614fe8fb8f3a9bae53dde89823fe2dc0a3030a
|
3 |
+
size 4811915
|
Walker/Walker-29999516.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19dd8c4bfb960499f69ab35506967bde7777ff417dd477efeb46a194fe4583b5
|
3 |
+
size 824597
|
Walker/Walker-29999516.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df2bb9e9a9453a9c463dcf541618fe028ed0ff993d136a83a9b5f279de79de3d
|
3 |
+
size 4811915
|
Walker/Walker-30000516.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10f7086270ec9e07dcb343da2b8cb6467693b4de72c0f41319a2d27db54b0a0b
|
3 |
+
size 824597
|
Walker/Walker-30000516.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29396599e42b16acc71bd3a8b3a22ad37047157edd2e48af5e8d318e8bd2aba2
|
3 |
+
size 4811915
|
Walker/checkpoint.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2b7d9fdd325444318847a229f95dcc63819bf88f235507fb2ea57fb940b27e0
|
3 |
+
size 4811490
|
Walker/events.out.tfevents.1700726288.Scar17SE_BK.47376.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73223c257469da3fc6622daab62877064ba9caaf625eefd838892b31e938ef64
|
3 |
+
size 10190188
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default_settings": null, "behaviors": {"Walker": {"trainer_type": "ppo", "hyperparameters": {"batch_size": 2048, "buffer_size": 20480, "learning_rate": 0.0003, "beta": 0.005, "epsilon": 0.2, "lambd": 0.95, "num_epoch": 3, "shared_critic": false, "learning_rate_schedule": "linear", "beta_schedule": "linear", "epsilon_schedule": "linear"}, "checkpoint_interval": 500000, "network_settings": {"normalize": true, "hidden_units": 256, "num_layers": 3, "vis_encode_type": "simple", "memory": null, "goal_conditioning_type": "hyper", "deterministic": false}, "reward_signals": {"extrinsic": {"gamma": 0.995, "strength": 1.0, "network_settings": {"normalize": false, "hidden_units": 128, "num_layers": 2, "vis_encode_type": "simple", "memory": null, "goal_conditioning_type": "hyper", "deterministic": false}}}, "init_path": null, "keep_checkpoints": 5, "even_checkpoints": false, "max_steps": 30000000, "time_horizon": 1000, "summary_freq": 30000, "threaded": false, "self_play": null, "behavioral_cloning": null}}, "env_settings": {"env_path": null, "env_args": null, "base_port": 5005, "num_envs": 1, "num_areas": 1, "timeout_wait": 60, "seed": -1, "max_lifetime_restarts": 10, "restarts_rate_limit_n": 1, "restarts_rate_limit_period_s": 60}, "engine_settings": {"width": 84, "height": 84, "quality_level": 5, "time_scale": 20, "target_frame_rate": -1, "capture_frame_rate": 60, "no_graphics": false}, "environment_parameters": null, "checkpoint_settings": {"run_id": "peoeoe", "initialize_from": null, "load_model": false, "resume": false, "force": false, "train_model": false, "inference": false, "results_dir": "results"}, "torch_settings": {"device": null}, "debug": false}
|
configuration.yaml
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_settings: null
|
2 |
+
behaviors:
|
3 |
+
Walker:
|
4 |
+
trainer_type: ppo
|
5 |
+
hyperparameters:
|
6 |
+
batch_size: 2048
|
7 |
+
buffer_size: 20480
|
8 |
+
learning_rate: 0.0003
|
9 |
+
beta: 0.005
|
10 |
+
epsilon: 0.2
|
11 |
+
lambd: 0.95
|
12 |
+
num_epoch: 3
|
13 |
+
shared_critic: false
|
14 |
+
learning_rate_schedule: linear
|
15 |
+
beta_schedule: linear
|
16 |
+
epsilon_schedule: linear
|
17 |
+
checkpoint_interval: 500000
|
18 |
+
network_settings:
|
19 |
+
normalize: true
|
20 |
+
hidden_units: 256
|
21 |
+
num_layers: 3
|
22 |
+
vis_encode_type: simple
|
23 |
+
memory: null
|
24 |
+
goal_conditioning_type: hyper
|
25 |
+
deterministic: false
|
26 |
+
reward_signals:
|
27 |
+
extrinsic:
|
28 |
+
gamma: 0.995
|
29 |
+
strength: 1.0
|
30 |
+
network_settings:
|
31 |
+
normalize: false
|
32 |
+
hidden_units: 128
|
33 |
+
num_layers: 2
|
34 |
+
vis_encode_type: simple
|
35 |
+
memory: null
|
36 |
+
goal_conditioning_type: hyper
|
37 |
+
deterministic: false
|
38 |
+
init_path: null
|
39 |
+
keep_checkpoints: 5
|
40 |
+
even_checkpoints: false
|
41 |
+
max_steps: 30000000
|
42 |
+
time_horizon: 1000
|
43 |
+
summary_freq: 30000
|
44 |
+
threaded: false
|
45 |
+
self_play: null
|
46 |
+
behavioral_cloning: null
|
47 |
+
env_settings:
|
48 |
+
env_path: null
|
49 |
+
env_args: null
|
50 |
+
base_port: 5005
|
51 |
+
num_envs: 1
|
52 |
+
num_areas: 1
|
53 |
+
timeout_wait: 60
|
54 |
+
seed: -1
|
55 |
+
max_lifetime_restarts: 10
|
56 |
+
restarts_rate_limit_n: 1
|
57 |
+
restarts_rate_limit_period_s: 60
|
58 |
+
engine_settings:
|
59 |
+
width: 84
|
60 |
+
height: 84
|
61 |
+
quality_level: 5
|
62 |
+
time_scale: 20
|
63 |
+
target_frame_rate: -1
|
64 |
+
capture_frame_rate: 60
|
65 |
+
no_graphics: false
|
66 |
+
environment_parameters: null
|
67 |
+
checkpoint_settings:
|
68 |
+
run_id: peoeoe
|
69 |
+
initialize_from: null
|
70 |
+
load_model: false
|
71 |
+
resume: false
|
72 |
+
force: false
|
73 |
+
train_model: false
|
74 |
+
inference: false
|
75 |
+
results_dir: results
|
76 |
+
torch_settings:
|
77 |
+
device: null
|
78 |
+
debug: false
|
run_logs/timers.json
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "root",
|
3 |
+
"gauges": {
|
4 |
+
"Walker.Policy.Entropy.mean": {
|
5 |
+
"value": 0.7576263546943665,
|
6 |
+
"min": 0.7576207518577576,
|
7 |
+
"max": 1.4197757244110107,
|
8 |
+
"count": 1000
|
9 |
+
},
|
10 |
+
"Walker.Policy.Entropy.sum": {
|
11 |
+
"value": 24675.890625,
|
12 |
+
"min": 19736.384765625,
|
13 |
+
"max": 42716.0859375,
|
14 |
+
"count": 1000
|
15 |
+
},
|
16 |
+
"Walker.Environment.EpisodeLength.mean": {
|
17 |
+
"value": 614.3061224489796,
|
18 |
+
"min": 11.339777869189634,
|
19 |
+
"max": 751.475,
|
20 |
+
"count": 1000
|
21 |
+
},
|
22 |
+
"Walker.Environment.EpisodeLength.sum": {
|
23 |
+
"value": 30101.0,
|
24 |
+
"min": 27567.0,
|
25 |
+
"max": 30811.0,
|
26 |
+
"count": 1000
|
27 |
+
},
|
28 |
+
"Walker.Step.mean": {
|
29 |
+
"value": 29999516.0,
|
30 |
+
"min": 29997.0,
|
31 |
+
"max": 29999516.0,
|
32 |
+
"count": 1000
|
33 |
+
},
|
34 |
+
"Walker.Step.sum": {
|
35 |
+
"value": 29999516.0,
|
36 |
+
"min": 29997.0,
|
37 |
+
"max": 29999516.0,
|
38 |
+
"count": 1000
|
39 |
+
},
|
40 |
+
"Walker.Policy.ExtrinsicValueEstimate.mean": {
|
41 |
+
"value": 230.66744995117188,
|
42 |
+
"min": -0.6896133422851562,
|
43 |
+
"max": 324.305419921875,
|
44 |
+
"count": 1000
|
45 |
+
},
|
46 |
+
"Walker.Policy.ExtrinsicValueEstimate.sum": {
|
47 |
+
"value": 11302.705078125,
|
48 |
+
"min": -1605.419921875,
|
49 |
+
"max": 22368.21875,
|
50 |
+
"count": 1000
|
51 |
+
},
|
52 |
+
"Walker.Environment.CumulativeReward.mean": {
|
53 |
+
"value": 909.9295683319167,
|
54 |
+
"min": -0.6570962896811855,
|
55 |
+
"max": 1362.2951894673433,
|
56 |
+
"count": 1000
|
57 |
+
},
|
58 |
+
"Walker.Environment.CumulativeReward.sum": {
|
59 |
+
"value": 44586.54884826392,
|
60 |
+
"min": -1536.948221564293,
|
61 |
+
"max": 62378.6633939147,
|
62 |
+
"count": 1000
|
63 |
+
},
|
64 |
+
"Walker.Policy.ExtrinsicReward.mean": {
|
65 |
+
"value": 909.9295683319167,
|
66 |
+
"min": -0.6570962896811855,
|
67 |
+
"max": 1362.2951894673433,
|
68 |
+
"count": 1000
|
69 |
+
},
|
70 |
+
"Walker.Policy.ExtrinsicReward.sum": {
|
71 |
+
"value": 44586.54884826392,
|
72 |
+
"min": -1536.948221564293,
|
73 |
+
"max": 62378.6633939147,
|
74 |
+
"count": 1000
|
75 |
+
},
|
76 |
+
"Walker.Losses.PolicyLoss.mean": {
|
77 |
+
"value": 0.014960785885341466,
|
78 |
+
"min": 0.010199054366482111,
|
79 |
+
"max": 0.025043683033436535,
|
80 |
+
"count": 1000
|
81 |
+
},
|
82 |
+
"Walker.Losses.PolicyLoss.sum": {
|
83 |
+
"value": 0.014960785885341466,
|
84 |
+
"min": 0.010199054366482111,
|
85 |
+
"max": 0.0446107293808988,
|
86 |
+
"count": 1000
|
87 |
+
},
|
88 |
+
"Walker.Losses.ValueLoss.mean": {
|
89 |
+
"value": 738.7845825195312,
|
90 |
+
"min": 0.08481643547614416,
|
91 |
+
"max": 1760.7361653645833,
|
92 |
+
"count": 1000
|
93 |
+
},
|
94 |
+
"Walker.Losses.ValueLoss.sum": {
|
95 |
+
"value": 738.7845825195312,
|
96 |
+
"min": 0.08481643547614416,
|
97 |
+
"max": 3228.9439615885417,
|
98 |
+
"count": 1000
|
99 |
+
},
|
100 |
+
"Walker.Policy.LearningRate.mean": {
|
101 |
+
"value": 1.4884995041667527e-07,
|
102 |
+
"min": 1.4884995041667527e-07,
|
103 |
+
"max": 0.0002997951200682934,
|
104 |
+
"count": 1000
|
105 |
+
},
|
106 |
+
"Walker.Policy.LearningRate.sum": {
|
107 |
+
"value": 1.4884995041667527e-07,
|
108 |
+
"min": 1.4884995041667527e-07,
|
109 |
+
"max": 0.0005985658504780501,
|
110 |
+
"count": 1000
|
111 |
+
},
|
112 |
+
"Walker.Policy.Epsilon.mean": {
|
113 |
+
"value": 0.10004958333333337,
|
114 |
+
"min": 0.10004958333333337,
|
115 |
+
"max": 0.1999317066666667,
|
116 |
+
"count": 1000
|
117 |
+
},
|
118 |
+
"Walker.Policy.Epsilon.sum": {
|
119 |
+
"value": 0.10004958333333337,
|
120 |
+
"min": 0.10004958333333337,
|
121 |
+
"max": 0.3995219500000001,
|
122 |
+
"count": 1000
|
123 |
+
},
|
124 |
+
"Walker.Policy.Beta.mean": {
|
125 |
+
"value": 1.247420833333348e-05,
|
126 |
+
"min": 1.247420833333348e-05,
|
127 |
+
"max": 0.0049965921626666686,
|
128 |
+
"count": 1000
|
129 |
+
},
|
130 |
+
"Walker.Policy.Beta.sum": {
|
131 |
+
"value": 1.247420833333348e-05,
|
132 |
+
"min": 1.247420833333348e-05,
|
133 |
+
"max": 0.009976145305,
|
134 |
+
"count": 1000
|
135 |
+
},
|
136 |
+
"Walker.IsTraining.mean": {
|
137 |
+
"value": 1.0,
|
138 |
+
"min": 1.0,
|
139 |
+
"max": 1.0,
|
140 |
+
"count": 1000
|
141 |
+
},
|
142 |
+
"Walker.IsTraining.sum": {
|
143 |
+
"value": 1.0,
|
144 |
+
"min": 1.0,
|
145 |
+
"max": 1.0,
|
146 |
+
"count": 1000
|
147 |
+
}
|
148 |
+
},
|
149 |
+
"metadata": {
|
150 |
+
"timer_format_version": "0.1.0",
|
151 |
+
"start_time_seconds": "1700726264",
|
152 |
+
"python_version": "3.10.12 | packaged by Anaconda, Inc. | (main, Jul 5 2023, 19:09:20) [MSC v.1916 64 bit (AMD64)]",
|
153 |
+
"command_line_arguments": "\\\\?\\C:\\Users\\brian\\anaconda3\\envs\\mlagents\\Scripts\\mlagents-learn C:\\Users\\brian\\Downloads\\ml-agents-release_21\\ml-agents-release_21\\config\\ppo\\Walker.yaml --run-id=peoeoe",
|
154 |
+
"mlagents_version": "1.0.0",
|
155 |
+
"mlagents_envs_version": "1.0.0",
|
156 |
+
"communication_protocol_version": "1.5.0",
|
157 |
+
"pytorch_version": "2.1.1",
|
158 |
+
"numpy_version": "1.23.1",
|
159 |
+
"end_time_seconds": "1700778062"
|
160 |
+
},
|
161 |
+
"total": 51797.8043054,
|
162 |
+
"count": 1,
|
163 |
+
"self": 0.015706799997133203,
|
164 |
+
"children": {
|
165 |
+
"run_training.setup": {
|
166 |
+
"total": 0.2039580999989994,
|
167 |
+
"count": 1,
|
168 |
+
"self": 0.2039580999989994
|
169 |
+
},
|
170 |
+
"TrainerController.start_learning": {
|
171 |
+
"total": 51797.584640500005,
|
172 |
+
"count": 1,
|
173 |
+
"self": 70.29768369962403,
|
174 |
+
"children": {
|
175 |
+
"TrainerController._reset_env": {
|
176 |
+
"total": 23.856557399994927,
|
177 |
+
"count": 1,
|
178 |
+
"self": 23.856557399994927
|
179 |
+
},
|
180 |
+
"TrainerController.advance": {
|
181 |
+
"total": 51703.395899900395,
|
182 |
+
"count": 3267459,
|
183 |
+
"self": 68.43259382342512,
|
184 |
+
"children": {
|
185 |
+
"env_step": {
|
186 |
+
"total": 40749.21110778533,
|
187 |
+
"count": 3267459,
|
188 |
+
"self": 35325.32746058762,
|
189 |
+
"children": {
|
190 |
+
"SubprocessEnvManager._take_step": {
|
191 |
+
"total": 5379.4323795005475,
|
192 |
+
"count": 3267459,
|
193 |
+
"self": 248.4734907105012,
|
194 |
+
"children": {
|
195 |
+
"TorchPolicy.evaluate": {
|
196 |
+
"total": 5130.958888790046,
|
197 |
+
"count": 3000521,
|
198 |
+
"self": 5130.958888790046
|
199 |
+
}
|
200 |
+
}
|
201 |
+
},
|
202 |
+
"workers": {
|
203 |
+
"total": 44.45126769716444,
|
204 |
+
"count": 3267459,
|
205 |
+
"self": 0.0,
|
206 |
+
"children": {
|
207 |
+
"worker_root": {
|
208 |
+
"total": 51683.09217708981,
|
209 |
+
"count": 3267459,
|
210 |
+
"is_parallel": true,
|
211 |
+
"self": 20887.179955797023,
|
212 |
+
"children": {
|
213 |
+
"steps_from_proto": {
|
214 |
+
"total": 0.0011389999999664724,
|
215 |
+
"count": 1,
|
216 |
+
"is_parallel": true,
|
217 |
+
"self": 0.00026250000519212335,
|
218 |
+
"children": {
|
219 |
+
"_process_rank_one_or_two_observation": {
|
220 |
+
"total": 0.000876499994774349,
|
221 |
+
"count": 2,
|
222 |
+
"is_parallel": true,
|
223 |
+
"self": 0.000876499994774349
|
224 |
+
}
|
225 |
+
}
|
226 |
+
},
|
227 |
+
"UnityEnvironment.step": {
|
228 |
+
"total": 30795.91108229279,
|
229 |
+
"count": 3267459,
|
230 |
+
"is_parallel": true,
|
231 |
+
"self": 512.4209040938294,
|
232 |
+
"children": {
|
233 |
+
"UnityEnvironment._generate_step_input": {
|
234 |
+
"total": 871.5271096933284,
|
235 |
+
"count": 3267459,
|
236 |
+
"is_parallel": true,
|
237 |
+
"self": 871.5271096933284
|
238 |
+
},
|
239 |
+
"communicator.exchange": {
|
240 |
+
"total": 28046.3752482016,
|
241 |
+
"count": 3267459,
|
242 |
+
"is_parallel": true,
|
243 |
+
"self": 28046.3752482016
|
244 |
+
},
|
245 |
+
"steps_from_proto": {
|
246 |
+
"total": 1365.5878203040338,
|
247 |
+
"count": 3267459,
|
248 |
+
"is_parallel": true,
|
249 |
+
"self": 335.55627301402274,
|
250 |
+
"children": {
|
251 |
+
"_process_rank_one_or_two_observation": {
|
252 |
+
"total": 1030.031547290011,
|
253 |
+
"count": 6534918,
|
254 |
+
"is_parallel": true,
|
255 |
+
"self": 1030.031547290011
|
256 |
+
}
|
257 |
+
}
|
258 |
+
}
|
259 |
+
}
|
260 |
+
}
|
261 |
+
}
|
262 |
+
}
|
263 |
+
}
|
264 |
+
}
|
265 |
+
}
|
266 |
+
},
|
267 |
+
"trainer_advance": {
|
268 |
+
"total": 10885.752198291637,
|
269 |
+
"count": 3267459,
|
270 |
+
"self": 94.68912797140365,
|
271 |
+
"children": {
|
272 |
+
"process_trajectory": {
|
273 |
+
"total": 2920.225314320385,
|
274 |
+
"count": 3267459,
|
275 |
+
"self": 2916.5946360203816,
|
276 |
+
"children": {
|
277 |
+
"RLTrainer._checkpoint": {
|
278 |
+
"total": 3.6306783000036376,
|
279 |
+
"count": 60,
|
280 |
+
"self": 3.6306783000036376
|
281 |
+
}
|
282 |
+
}
|
283 |
+
},
|
284 |
+
"_update_policy": {
|
285 |
+
"total": 7870.837755999848,
|
286 |
+
"count": 1448,
|
287 |
+
"self": 3846.254959000711,
|
288 |
+
"children": {
|
289 |
+
"TorchPPOOptimizer.update": {
|
290 |
+
"total": 4024.582796999137,
|
291 |
+
"count": 43440,
|
292 |
+
"self": 4024.582796999137
|
293 |
+
}
|
294 |
+
}
|
295 |
+
}
|
296 |
+
}
|
297 |
+
}
|
298 |
+
}
|
299 |
+
},
|
300 |
+
"trainer_threads": {
|
301 |
+
"total": 7.999915396794677e-07,
|
302 |
+
"count": 1,
|
303 |
+
"self": 7.999915396794677e-07
|
304 |
+
},
|
305 |
+
"TrainerController._save_models": {
|
306 |
+
"total": 0.03449869999894872,
|
307 |
+
"count": 1,
|
308 |
+
"self": 0.001767699999618344,
|
309 |
+
"children": {
|
310 |
+
"RLTrainer._checkpoint": {
|
311 |
+
"total": 0.03273099999933038,
|
312 |
+
"count": 1,
|
313 |
+
"self": 0.03273099999933038
|
314 |
+
}
|
315 |
+
}
|
316 |
+
}
|
317 |
+
}
|
318 |
+
}
|
319 |
+
}
|
320 |
+
}
|
run_logs/training_status.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Walker": {
|
3 |
+
"checkpoints": [
|
4 |
+
{
|
5 |
+
"steps": 28499616,
|
6 |
+
"file_path": "results\\peoeoe\\Walker\\Walker-28499616.onnx",
|
7 |
+
"reward": 1258.0341087488027,
|
8 |
+
"creation_time": 1700776273.5707734,
|
9 |
+
"auxillary_file_paths": [
|
10 |
+
"results\\peoeoe\\Walker\\Walker-28499616.pt"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"steps": 28999814,
|
15 |
+
"file_path": "results\\peoeoe\\Walker\\Walker-28999814.onnx",
|
16 |
+
"reward": 1046.5179156541824,
|
17 |
+
"creation_time": 1700776823.5884752,
|
18 |
+
"auxillary_file_paths": [
|
19 |
+
"results\\peoeoe\\Walker\\Walker-28999814.pt"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"steps": 29499968,
|
24 |
+
"file_path": "results\\peoeoe\\Walker\\Walker-29499968.onnx",
|
25 |
+
"reward": 1329.8401733066726,
|
26 |
+
"creation_time": 1700777473.6491804,
|
27 |
+
"auxillary_file_paths": [
|
28 |
+
"results\\peoeoe\\Walker\\Walker-29499968.pt"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"steps": 29999516,
|
33 |
+
"file_path": "results\\peoeoe\\Walker\\Walker-29999516.onnx",
|
34 |
+
"reward": 773.562527270019,
|
35 |
+
"creation_time": 1700778062.6647894,
|
36 |
+
"auxillary_file_paths": [
|
37 |
+
"results\\peoeoe\\Walker\\Walker-29999516.pt"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"steps": 30000516,
|
42 |
+
"file_path": "results\\peoeoe\\Walker\\Walker-30000516.onnx",
|
43 |
+
"reward": 824.4981669964126,
|
44 |
+
"creation_time": 1700778062.7271342,
|
45 |
+
"auxillary_file_paths": [
|
46 |
+
"results\\peoeoe\\Walker\\Walker-30000516.pt"
|
47 |
+
]
|
48 |
+
}
|
49 |
+
],
|
50 |
+
"final_checkpoint": {
|
51 |
+
"steps": 30000516,
|
52 |
+
"file_path": "results\\peoeoe\\Walker.onnx",
|
53 |
+
"reward": 824.4981669964126,
|
54 |
+
"creation_time": 1700778062.7271342,
|
55 |
+
"auxillary_file_paths": [
|
56 |
+
"results\\peoeoe\\Walker\\Walker-30000516.pt"
|
57 |
+
]
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"metadata": {
|
61 |
+
"stats_format_version": "0.3.0",
|
62 |
+
"mlagents_version": "1.0.0",
|
63 |
+
"torch_version": "2.1.1"
|
64 |
+
}
|
65 |
+
}
|