{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff872be9780>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679694914683381005, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABD6m776hIy/P1GEv2rKqj7u1lE/vhd6u17p3r7l0LS+n5ggv3/iDMCLqBG/zMw0v+Mqhj/yhbG/SDYKP21Ujr7NgAC+2l1aP9jmYz8CfOW+oIYkP9T0yb/7SZE/k+aCvrS1AcBYyc4+2GHPv7QfjT++0e2+YdWCv4PqOL+uSwm9Qvr2vj+vJj8VC46/Og7MPL0HV78f6CQ/z3g4v+y1L72PhyQ/wdTKP2TgLT+4i/U9cQaav0KJkb4UPpC+XRbGPVwzmj9Tz7q8yPINv0qPzr0goPw+WMnOPv0BHj92MWi/eEyQPxEegz3Hsh0/imO8P6YKT76g+q6/86fHvyK2H79CWm0/uUTfPpX2N79PUNS8I2mWP48SOrw05NI9GH1YP+NWob+6GtM/QKeov4DPAkBW3Pi+MN2ivybMgb4EAJM/IKD8PljJzj79AR4/djFovwZ2nr975fC+TQ5PPqAFWr6vGHY9kk9QPXNxrT643zy+M/bHvovFDz4T1Ym+5rskvlpdnz73FCi9nNktP8VAoLyvVrO+TNB9vgCmYz9dP4a9ahCaP7R2g7tecA6/zxjUPCCg/D5Yyc4+/QEeP3YxaL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACncLC0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEFo9PQAAAADYk/e/AAAAAOCwCz0AAAAAFgn6PwAAAADN8fq9AAAAAAaL7T8AAAAASBsFvgAAAACbq/i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANwgSNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLOI6j0AAAAACNTgvwAAAACOANM9AAAAAM6m3j8AAAAATYIbPQAAAADuD+c/AAAAAEDQeL0AAAAAOmXavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG3libQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAETa89AAAAAFe1+L8AAAAAqIboPQAAAAB/Deg/AAAAABJuwT0AAAAAgcfYPwAAAADh+AQ+AAAAAFIs9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACdPnU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh50QPQAAAACSWfK/AAAAAKo19jwAAAAAUtncPwAAAADoIq09AAAAAF6P7j8AAAAA294dPQAAAADRb+K/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJFtYUCaJAOMAWyUTegDjAF0lEdAqt3GYSg5BHV9lChoBkdAkUtrfpD/l2gHTegDaAhHQKreMNkvsZ51fZQoaAZHQJG64UfxMFloB03oA2gIR0Cq5216u4gBdX2UKGgGR0CSg5SOBDohaAdN6ANoCEdAquhLbQC0W3V9lChoBkdAkOUzjBEa2mgHTegDaAhHQKrs677sOXp1fZQoaAZHQJLyaRW912doB03oA2gIR0Cq7TctwrDqdX2UKGgGR0CRHeOE/SpjaAdN6ANoCEdAqvPqOgg5inV9lChoBkdAkivZ0KZ2IWgHTegDaAhHQKr0xdUKiPB1fZQoaAZHQJHTMhUzbexoB03oA2gIR0Cq+V1rAP/adX2UKGgGR0CSc4vwEyLyaAdN6ANoCEdAqvmrA57w8XV9lChoBkdAk5LrE5yU92gHTegDaAhHQKsE61DSgGt1fZQoaAZHQJByE9W6shhoB03oA2gIR0CrBie2d/aydX2UKGgGR0CQusM/hVENaAdN6ANoCEdAqwyhbfP5YnV9lChoBkdAkSiXMt9QXWgHTegDaAhHQKsM7cAzYVZ1fZQoaAZHQJJAhjUd7v5oB03oA2gIR0CrE4js2NvPdX2UKGgGR0CSmq/hVENOaAdN6ANoCEdAqxRp4yGi6HV9lChoBkdAkH7wl4TsY2gHTegDaAhHQKsZc4ZuQ6p1fZQoaAZHQJBFxHjIaLpoB03oA2gIR0CrGd7X6InCdX2UKGgGR0CS9BhuO0b+aAdN6ANoCEdAqyN3evZAZHV9lChoBkdAkaSixNZeRmgHTegDaAhHQKskZpQDV6N1fZQoaAZHQJLfuK4x1xNoB03oA2gIR0CrKQoomXw9dX2UKGgGR0CQuZ7WuoxYaAdN6ANoCEdAqylZWq94/3V9lChoBkdAk6AgPRRdhWgHTegDaAhHQKswMbNr0rd1fZQoaAZHQJKkxpg1FYxoB03oA2gIR0CrMRFPacqfdX2UKGgGR0CTCYa4tpVTaAdN6ANoCEdAqzXHqPfbbnV9lChoBkdAkeaKTwDvE2gHTegDaAhHQKs2Ese4kNZ1fZQoaAZHQJDIPBKtga5oB03oA2gIR0CrP99sabWmdX2UKGgGR0CS4MavRqoIaAdN6ANoCEdAq0DtH2AXmHV9lChoBkdAkmrwxvegtmgHTegDaAhHQKtFaNQ0oBt1fZQoaAZHQJG0oIX0oSdoB03oA2gIR0CrRbQPI4lydX2UKGgGR0CSIAVnEl3RaAdN6ANoCEdAq0xU6cRUWHV9lChoBkdAkdEEx/NJOGgHTegDaAhHQKtNLZFocrB1fZQoaAZHQJMACVkc0choB03oA2gIR0CrUcf95yEMdX2UKGgGR0CQ8a8ejmCAaAdN6ANoCEdAq1ISbx3FDXV9lChoBkdAkw8dP557gWgHTegDaAhHQKta5vGZNPB1fZQoaAZHQJIhOCEpRXRoB03oA2gIR0CrXDnDBMzudX2UKGgGR0CR2hfV7Qb/aAdN6ANoCEdAq2GuYjSofnV9lChoBkdAk2hW4ZuQ62gHTegDaAhHQKth+0Q9RrJ1fZQoaAZHQJN3BahYeT5oB03oA2gIR0CraJx6nivQdX2UKGgGR0CTQ3TKkl/paAdN6ANoCEdAq2l83CKrJnV9lChoBkdAkybMFMZgomgHTegDaAhHQKtuOCROk+J1fZQoaAZHQJIuXsOXmeVoB03oA2gIR0CrboR1gYxddX2UKGgGR0CUn7q0+kgwaAdN6ANoCEdAq3adaKUFCHV9lChoBkdAkMwx1cMVlGgHTegDaAhHQKt36RnOB191fZQoaAZHQJOnQCkoF3ZoB03oA2gIR0CrfhpzcRDkdX2UKGgGR0CUcoQU5+6RaAdN6ANoCEdAq35kzsQd0nV9lChoBkdAk1KLL2YfGWgHTegDaAhHQKuFBtVJcxF1fZQoaAZHQJLNL531SO1oB03oA2gIR0CrhekVnEl3dX2UKGgGR0CSVnZLqUu+aAdN6ANoCEdAq4p6tcObzHV9lChoBkdAkiujkuHvdGgHTegDaAhHQKuKxsa86FN1fZQoaAZHQJFj7TlT3qRoB03oA2gIR0Crkf9/BnBddX2UKGgGR0CRPCuJUHY6aAdN6ANoCEdAq5M4D1XeWXV9lChoBkdAkQiSmuTzNGgHTegDaAhHQKuaFkAggYB1fZQoaAZHQJIegyJsO5JoB03oA2gIR0Crmoj/dZaFdX2UKGgGR0CSEKc6NlyzaAdN6ANoCEdAq6Fbz5GjK3V9lChoBkdAknrv3rUsnWgHTegDaAhHQKuiPbItDlZ1fZQoaAZHQJHi6DUVi4JoB03oA2gIR0CrpvnObAk+dX2UKGgGR0CSom7NSqEOaAdN6ANoCEdAq6dGlANXo3V9lChoBkdAk7G3rQgLZ2gHTegDaAhHQKuuFKtga3t1fZQoaAZHQJEsAPvrnkloB03oA2gIR0Crry2ZJCjUdX2UKGgGR0CSqYSqlxffaAdN6ANoCEdAq7YS13MY/HV9lChoBkdAk1NtZJTVD2gHTegDaAhHQKu2jD63y7R1fZQoaAZHQJG3j5gw485oB03oA2gIR0Crvg06HTJAdX2UKGgGR0CSW2Gb1AZ9aAdN6ANoCEdAq77sGorFwXV9lChoBkdAkUzWVJL/TGgHTegDaAhHQKvDbNzKcNJ1fZQoaAZHQJE7NPBSDRNoB03oA2gIR0Crw7rSE12rdX2UKGgGR0CTjoxMnJDFaAdN6ANoCEdAq8psETxoZnV9lChoBkdAlBbR8pkPMGgHTegDaAhHQKvLSL7XQMR1fZQoaAZHQJOQli7TUiJoB03oA2gIR0Cr0WYvFm4BdX2UKGgGR0CVmVQ/X5FgaAdN6ANoCEdAq9HcYCQtBnV9lChoBkdAklDtVJcxCmgHTegDaAhHQKvaWRK6Fuh1fZQoaAZHQJQYYxFiKBNoB03oA2gIR0Cr20IOpbUxdX2UKGgGR0CUIx2qDK5kaAdN6ANoCEdAq9/1ZX+2mnV9lChoBkdAk0D/dhy8z2gHTegDaAhHQKvgQUPhAGB1fZQoaAZHQJKuwHQhOgxoB03oA2gIR0Cr5xKJuVHGdX2UKGgGR0CTBTLl3hXKaAdN6ANoCEdAq+f76P8ye3V9lChoBkdAke3e2iL2pWgHTegDaAhHQKvtV2OAAhl1fZQoaAZHQJBUqREF4cFoB03oA2gIR0Cr7ca9sabXdX2UKGgGR0CP5AfthNM5aAdN6ANoCEdAq/cNhCtzS3V9lChoBkdAlA7ddqtYCGgHTegDaAhHQKv36NFz+3p1fZQoaAZHQJBmIYQ8OkNoB03oA2gIR0Cr/HLkCFK1dX2UKGgGR0CTAp0tRNypaAdN6ANoCEdAq/y+d9Ujs3V9lChoBkdAk8P8lb/wRWgHTegDaAhHQKwDf4O+ZgJ1fZQoaAZHQIdSz8Nx2jhoB03oA2gIR0CsBFo6S1VpdX2UKGgGR0CT/G1IiC8OaAdN6ANoCEdArAkMrupjt3V9lChoBkdAk71rAgxJumgHTegDaAhHQKwJgVdonKJ1fZQoaAZHQJQjmc/dIoVoB03oA2gIR0CsE2ILgGbDdX2UKGgGR0CSrvUmUnogaAdN6ANoCEdArBQ/2PDHfnV9lChoBkdAk5HJHqeK9GgHTegDaAhHQKwY5KaoddV1fZQoaAZHQJOeY4rBj4JoB03oA2gIR0CsGThLoOhCdX2UKGgGR0CSF+fDUExJaAdN6ANoCEdArB/49JSR83V9lChoBkdAkSZk8V58jWgHTegDaAhHQKwg1yy2QXB1fZQoaAZHQJMFg8YAKfFoB03oA2gIR0CsJXRSxZ+ydX2UKGgGR0CTDf7voePraAdN6ANoCEdArCXGDDjzZ3V9lChoBkdAk+Uz101ZT2gHTegDaAhHQKwvZ0+TvAp1fZQoaAZHQJIv9fLLZBdoB03oA2gIR0CsMLrwvxpddX2UKGgGR0CTcXe4kNWmaAdN6ANoCEdArDWUUh3aBnV9lChoBkdAkr52ilBQemgHTegDaAhHQKw16PUaybB1fZQoaAZHQJBG7SXt0FNoB03oA2gIR0CsPJ9rXUYsdX2UKGgGR0CQQhviLl3haAdN6ANoCEdArD2CYCyQgnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}