--- library_name: transformers language: - dk license: apache-2.0 base_model: openai/whisper-large tags: - hf-asr-leaderboard - generated_from_trainer datasets: - alexandrainst/ftspeech metrics: - wer model-index: - name: Whisper Large FTSpeech - Your Name results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ftspeech type: alexandrainst/ftspeech args: 'split: test' metrics: - name: Wer type: wer value: 24.476331512025737 --- # Whisper Large FTSpeech - Your Name This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the ftspeech dataset. It achieves the following results on the evaluation set: - Loss: 0.3820 - Wer: 24.4763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.5793 | 0.0032 | 200 | 0.5536 | 30.4519 | | 0.4187 | 0.0064 | 400 | 0.4508 | 27.5208 | | 0.3587 | 0.0096 | 600 | 0.4125 | 25.5569 | | 0.3477 | 0.0129 | 800 | 0.3907 | 24.9318 | | 0.3786 | 0.0161 | 1000 | 0.3820 | 24.4763 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.21.0