File size: 5,373 Bytes
55c4f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02ba244
 
 
55c4f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4edd4da
e487069
a75304b
c355ce2
c031644
74cc07c
9786534
17e4075
6ebed36
9c5817b
85605cf
9c0ccad
5e08afb
524393a
554dd17
12cdf8d
377e82a
5012830
fa08861
f3339c7
f9dec3f
3f8d8fb
f9a8e2d
3c8ff67
dae0fb8
d2fb853
3b2d184
c74a1f0
a779d7f
f73d289
0b537cb
3c0a997
721171d
6ddcc1d
d4aa2c3
008b229
517979d
af61979
95b7ad8
fab1b71
26968fb
8b99039
5cd49ec
a695aa1
f22eb6f
68fbd3f
9a812c4
a04a38e
479e395
e22dbe7
72d194b
11629ba
150eae6
dd5b6cb
5b6651b
8b80692
8b629b5
4cb9732
fe964f9
13c524d
cff53ef
1a53446
8bf79bf
b9da9af
f035a1e
b6d0f0b
71c930b
b4343c3
9020279
1c50445
c3d4bc1
6edd453
50794a3
bcbb1c3
4dbb83a
47c51fa
fb32f98
4ad2574
1bef9ed
08b98c2
006e54e
8d09ef4
f77978f
c488f69
a201430
6d5ac3a
66e0b6b
a2f8c01
31e9f83
dc41647
68aeaa2
ddcca5c
5f3faec
abb8275
2d76adb
19133e6
fa25dda
f37a545
bb68b6e
02ba244
55c4f91
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_keras_callback
model-index:
- name: JuliusFx/dyu-fr-t5-small_v8
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# JuliusFx/dyu-fr-t5-small_v8

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.8793
- Validation Loss: 2.9071
- Epoch: 99

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.1481     | 3.2663          | 0     |
| 3.0205     | 3.2024          | 1     |
| 2.9712     | 3.1559          | 2     |
| 2.9209     | 3.1465          | 3     |
| 2.8848     | 3.1125          | 4     |
| 2.8512     | 3.1014          | 5     |
| 2.8239     | 3.0771          | 6     |
| 2.7965     | 3.0641          | 7     |
| 2.7743     | 3.0431          | 8     |
| 2.7505     | 3.0327          | 9     |
| 2.7325     | 3.0072          | 10    |
| 2.7153     | 3.0060          | 11    |
| 2.6904     | 2.9950          | 12    |
| 2.6750     | 2.9895          | 13    |
| 2.6554     | 2.9700          | 14    |
| 2.6400     | 2.9632          | 15    |
| 2.6220     | 2.9534          | 16    |
| 2.6059     | 2.9505          | 17    |
| 2.5913     | 2.9536          | 18    |
| 2.5779     | 2.9485          | 19    |
| 2.5624     | 2.9349          | 20    |
| 2.5469     | 2.9307          | 21    |
| 2.5341     | 2.9224          | 22    |
| 2.5223     | 2.9114          | 23    |
| 2.5093     | 2.8996          | 24    |
| 2.4995     | 2.9065          | 25    |
| 2.4855     | 2.8974          | 26    |
| 2.4706     | 2.8926          | 27    |
| 2.4589     | 2.9075          | 28    |
| 2.4521     | 2.8921          | 29    |
| 2.4380     | 2.9055          | 30    |
| 2.4243     | 2.8930          | 31    |
| 2.4131     | 2.8871          | 32    |
| 2.4065     | 2.8894          | 33    |
| 2.3911     | 2.8890          | 34    |
| 2.3833     | 2.8757          | 35    |
| 2.3724     | 2.8778          | 36    |
| 2.3628     | 2.8874          | 37    |
| 2.3556     | 2.8687          | 38    |
| 2.3441     | 2.8653          | 39    |
| 2.3321     | 2.8794          | 40    |
| 2.3203     | 2.8827          | 41    |
| 2.3118     | 2.8778          | 42    |
| 2.3027     | 2.8955          | 43    |
| 2.2903     | 2.8778          | 44    |
| 2.2821     | 2.8751          | 45    |
| 2.2760     | 2.8655          | 46    |
| 2.2592     | 2.8763          | 47    |
| 2.2534     | 2.8643          | 48    |
| 2.2466     | 2.8716          | 49    |
| 2.2363     | 2.8728          | 50    |
| 2.2279     | 2.8688          | 51    |
| 2.2225     | 2.8822          | 52    |
| 2.2133     | 2.8690          | 53    |
| 2.2025     | 2.8551          | 54    |
| 2.1937     | 2.8605          | 55    |
| 2.1863     | 2.8441          | 56    |
| 2.1776     | 2.8576          | 57    |
| 2.1732     | 2.8435          | 58    |
| 2.1640     | 2.8448          | 59    |
| 2.1530     | 2.8422          | 60    |
| 2.1438     | 2.8640          | 61    |
| 2.1360     | 2.8648          | 62    |
| 2.1302     | 2.8689          | 63    |
| 2.1213     | 2.8787          | 64    |
| 2.1170     | 2.8816          | 65    |
| 2.1016     | 2.8655          | 66    |
| 2.0986     | 2.8713          | 67    |
| 2.0892     | 2.8776          | 68    |
| 2.0876     | 2.8912          | 69    |
| 2.0722     | 2.8901          | 70    |
| 2.0678     | 2.8549          | 71    |
| 2.0607     | 2.8883          | 72    |
| 2.0544     | 2.8681          | 73    |
| 2.0481     | 2.8637          | 74    |
| 2.0358     | 2.8739          | 75    |
| 2.0347     | 2.8705          | 76    |
| 2.0232     | 2.8724          | 77    |
| 2.0225     | 2.8619          | 78    |
| 2.0096     | 2.8687          | 79    |
| 2.0038     | 2.8561          | 80    |
| 1.9969     | 2.8560          | 81    |
| 1.9873     | 2.8755          | 82    |
| 1.9880     | 2.8745          | 83    |
| 1.9758     | 2.8648          | 84    |
| 1.9711     | 2.8808          | 85    |
| 1.9635     | 2.8721          | 86    |
| 1.9512     | 2.8739          | 87    |
| 1.9526     | 2.8836          | 88    |
| 1.9442     | 2.8862          | 89    |
| 1.9364     | 2.8969          | 90    |
| 1.9311     | 2.8948          | 91    |
| 1.9234     | 2.9150          | 92    |
| 1.9154     | 2.9048          | 93    |
| 1.9057     | 2.9040          | 94    |
| 1.9057     | 2.9043          | 95    |
| 1.8981     | 2.8895          | 96    |
| 1.8923     | 2.9031          | 97    |
| 1.8797     | 2.9221          | 98    |
| 1.8793     | 2.9071          | 99    |


### Framework versions

- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2