File size: 2,380 Bytes
55c4f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2d184
 
 
55c4f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4edd4da
e487069
a75304b
c355ce2
c031644
74cc07c
9786534
17e4075
6ebed36
9c5817b
85605cf
9c0ccad
5e08afb
524393a
554dd17
12cdf8d
377e82a
5012830
fa08861
f3339c7
f9dec3f
3f8d8fb
f9a8e2d
3c8ff67
dae0fb8
d2fb853
3b2d184
55c4f91
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_keras_callback
model-index:
- name: JuliusFx/dyu-fr-t5-small_v8
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# JuliusFx/dyu-fr-t5-small_v8

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.4855
- Validation Loss: 2.8974
- Epoch: 26

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.1481     | 3.2663          | 0     |
| 3.0205     | 3.2024          | 1     |
| 2.9712     | 3.1559          | 2     |
| 2.9209     | 3.1465          | 3     |
| 2.8848     | 3.1125          | 4     |
| 2.8512     | 3.1014          | 5     |
| 2.8239     | 3.0771          | 6     |
| 2.7965     | 3.0641          | 7     |
| 2.7743     | 3.0431          | 8     |
| 2.7505     | 3.0327          | 9     |
| 2.7325     | 3.0072          | 10    |
| 2.7153     | 3.0060          | 11    |
| 2.6904     | 2.9950          | 12    |
| 2.6750     | 2.9895          | 13    |
| 2.6554     | 2.9700          | 14    |
| 2.6400     | 2.9632          | 15    |
| 2.6220     | 2.9534          | 16    |
| 2.6059     | 2.9505          | 17    |
| 2.5913     | 2.9536          | 18    |
| 2.5779     | 2.9485          | 19    |
| 2.5624     | 2.9349          | 20    |
| 2.5469     | 2.9307          | 21    |
| 2.5341     | 2.9224          | 22    |
| 2.5223     | 2.9114          | 23    |
| 2.5093     | 2.8996          | 24    |
| 2.4995     | 2.9065          | 25    |
| 2.4855     | 2.8974          | 26    |


### Framework versions

- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2