File size: 3,323 Bytes
55c4f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e22dbe7
 
 
55c4f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4edd4da
e487069
a75304b
c355ce2
c031644
74cc07c
9786534
17e4075
6ebed36
9c5817b
85605cf
9c0ccad
5e08afb
524393a
554dd17
12cdf8d
377e82a
5012830
fa08861
f3339c7
f9dec3f
3f8d8fb
f9a8e2d
3c8ff67
dae0fb8
d2fb853
3b2d184
c74a1f0
a779d7f
f73d289
0b537cb
3c0a997
721171d
6ddcc1d
d4aa2c3
008b229
517979d
af61979
95b7ad8
fab1b71
26968fb
8b99039
5cd49ec
a695aa1
f22eb6f
68fbd3f
9a812c4
a04a38e
479e395
e22dbe7
55c4f91
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_keras_callback
model-index:
- name: JuliusFx/dyu-fr-t5-small_v8
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# JuliusFx/dyu-fr-t5-small_v8

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.2466
- Validation Loss: 2.8716
- Epoch: 49

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.1481     | 3.2663          | 0     |
| 3.0205     | 3.2024          | 1     |
| 2.9712     | 3.1559          | 2     |
| 2.9209     | 3.1465          | 3     |
| 2.8848     | 3.1125          | 4     |
| 2.8512     | 3.1014          | 5     |
| 2.8239     | 3.0771          | 6     |
| 2.7965     | 3.0641          | 7     |
| 2.7743     | 3.0431          | 8     |
| 2.7505     | 3.0327          | 9     |
| 2.7325     | 3.0072          | 10    |
| 2.7153     | 3.0060          | 11    |
| 2.6904     | 2.9950          | 12    |
| 2.6750     | 2.9895          | 13    |
| 2.6554     | 2.9700          | 14    |
| 2.6400     | 2.9632          | 15    |
| 2.6220     | 2.9534          | 16    |
| 2.6059     | 2.9505          | 17    |
| 2.5913     | 2.9536          | 18    |
| 2.5779     | 2.9485          | 19    |
| 2.5624     | 2.9349          | 20    |
| 2.5469     | 2.9307          | 21    |
| 2.5341     | 2.9224          | 22    |
| 2.5223     | 2.9114          | 23    |
| 2.5093     | 2.8996          | 24    |
| 2.4995     | 2.9065          | 25    |
| 2.4855     | 2.8974          | 26    |
| 2.4706     | 2.8926          | 27    |
| 2.4589     | 2.9075          | 28    |
| 2.4521     | 2.8921          | 29    |
| 2.4380     | 2.9055          | 30    |
| 2.4243     | 2.8930          | 31    |
| 2.4131     | 2.8871          | 32    |
| 2.4065     | 2.8894          | 33    |
| 2.3911     | 2.8890          | 34    |
| 2.3833     | 2.8757          | 35    |
| 2.3724     | 2.8778          | 36    |
| 2.3628     | 2.8874          | 37    |
| 2.3556     | 2.8687          | 38    |
| 2.3441     | 2.8653          | 39    |
| 2.3321     | 2.8794          | 40    |
| 2.3203     | 2.8827          | 41    |
| 2.3118     | 2.8778          | 42    |
| 2.3027     | 2.8955          | 43    |
| 2.2903     | 2.8778          | 44    |
| 2.2821     | 2.8751          | 45    |
| 2.2760     | 2.8655          | 46    |
| 2.2592     | 2.8763          | 47    |
| 2.2534     | 2.8643          | 48    |
| 2.2466     | 2.8716          | 49    |


### Framework versions

- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2