JuncaiL commited on
Commit
e567dee
·
verified ·
1 Parent(s): 6dda61f

upload llama-265m model checkpoint

Browse files
README.md ADDED
@@ -0,0 +1 @@
 
 
1
+
config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./LLaMA_MoE_v1_3_5B_2_8/",
3
+ "add_weight_norm": false,
4
+ "architectures": [
5
+ "LlamaMoEForCausalLM"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_llama_moe.LlamaMoEConfig",
9
+ "AutoModel": "modeling_llama_moe_hf.LlamaMoEModel",
10
+ "AutoModelForCausalLM": "modeling_llama_moe_hf.LlamaMoEForCausalLM"
11
+ },
12
+ "bos_token_id": 0,
13
+ "calculator_type": "UniversalCalculator",
14
+ "capacity_factor": 1.25,
15
+ "drop_tokens": true,
16
+ "dropped_padding": "zero",
17
+ "eos_token_id": 2,
18
+ "gate_add_noise": true,
19
+ "gate_balance_loss_weight": 0.01,
20
+ "gate_network": "mlp",
21
+ "gate_noise_epsilon": 0.01,
22
+ "gate_type": "TopKBalancedNoisyGate",
23
+ "gate_use_balance": true,
24
+ "gate_use_softmax": true,
25
+ "gates": "mlp",
26
+ "hidden_act": "silu",
27
+ "hidden_size": 2048,
28
+ "initializer_range": 0.02,
29
+ "intermediate_size": 8192,
30
+ "max_position_embeddings": 2048,
31
+ "model_type": "llama_moe",
32
+ "multiply_gate_scores": true,
33
+ "num_attention_heads": 16,
34
+ "num_experts": 1,
35
+ "num_hidden_layers": 2,
36
+ "num_key_value_heads": 16,
37
+ "num_selects": 1,
38
+ "pad_token_id": 1,
39
+ "pretraining_tp": 1,
40
+ "rms_norm_eps": 1e-05,
41
+ "rope_scaling": null,
42
+ "score_scale_factor": 4.0,
43
+ "size_experts": [
44
+ [
45
+ 8192
46
+ ],
47
+ [
48
+ 8192
49
+ ]
50
+ ],
51
+ "tie_word_embeddings": false,
52
+ "torch_dtype": "float32",
53
+ "transformers_version": "4.30.2",
54
+ "use_cache": true,
55
+ "vocab_size": 32000
56
+ }
configuration_llama_moe.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+
3
+
4
+ class LlamaMoEConfig(PretrainedConfig):
5
+ model_type = "llama_moe"
6
+ keys_to_ignore_at_inference = ["past_key_values"]
7
+
8
+ def __init__(
9
+ self,
10
+ vocab_size=32000,
11
+ hidden_size=4096,
12
+ intermediate_size=11008,
13
+ num_hidden_layers=32,
14
+ num_attention_heads=32,
15
+ num_key_value_heads=None,
16
+ hidden_act="silu",
17
+ max_position_embeddings=2048,
18
+ initializer_range=0.02,
19
+ rms_norm_eps=1e-6,
20
+ use_cache=True,
21
+ pad_token_id=0,
22
+ bos_token_id=1,
23
+ eos_token_id=2,
24
+ pretraining_tp=1,
25
+ tie_word_embeddings=False,
26
+ rope_scaling=None,
27
+ # -------- moe expert configs --------
28
+ num_experts=16,
29
+ num_selects=4,
30
+ size_experts=None,
31
+ # -------- moe gate configs --------
32
+ gate_type="TopKBalancedNoisyGate",
33
+ gate_network="mlp",
34
+ gate_use_softmax=True,
35
+ gate_use_balance=True,
36
+ gate_balance_loss_weight=1e-2,
37
+ gate_add_noise=True,
38
+ # TopKBalancedNoisyGate
39
+ gate_noise_epsilon=1e-2,
40
+ # -------- moe calculator configs --------
41
+ calculator_type="UniversalCalculator",
42
+ multiply_gate_scores=True,
43
+ score_scale_factor=1.0,
44
+ add_weight_norm=False,
45
+ # SwitchDropTokenCalculator
46
+ drop_tokens=True,
47
+ dropped_padding="zero",
48
+ capacity_factor=1.25,
49
+ **kwargs,
50
+ ):
51
+ self.vocab_size = vocab_size
52
+ self.max_position_embeddings = max_position_embeddings
53
+ self.hidden_size = hidden_size
54
+ self.intermediate_size = intermediate_size
55
+ self.num_hidden_layers = num_hidden_layers
56
+ self.num_attention_heads = num_attention_heads
57
+ self.hidden_act = hidden_act
58
+ self.initializer_range = initializer_range
59
+ self.rms_norm_eps = rms_norm_eps
60
+ self.pretraining_tp = pretraining_tp
61
+ self.use_cache = use_cache
62
+ self.rope_scaling = rope_scaling
63
+ self._rope_scaling_validation()
64
+
65
+ self.num_experts = num_experts
66
+ self.num_selects = num_selects
67
+ self.size_experts = size_experts
68
+
69
+ self.gate_type = gate_type
70
+ self.gate_network = gate_network
71
+ self.gate_use_softmax = gate_use_softmax
72
+ self.gate_use_balance = gate_use_balance
73
+ self.gate_balance_loss_weight = gate_balance_loss_weight
74
+ self.gate_add_noise = gate_add_noise
75
+ self.gate_noise_epsilon = gate_noise_epsilon
76
+
77
+ self.calculator_type = calculator_type
78
+ self.multiply_gate_scores = multiply_gate_scores
79
+ self.score_scale_factor = score_scale_factor
80
+ self.add_weight_norm = add_weight_norm
81
+ self.drop_tokens = drop_tokens
82
+ self.dropped_padding = dropped_padding
83
+ self.capacity_factor = capacity_factor
84
+
85
+ # for backward compatibility
86
+ if num_key_value_heads is None:
87
+ num_key_value_heads = num_attention_heads
88
+
89
+ self.num_key_value_heads = num_key_value_heads
90
+
91
+ super().__init__(
92
+ pad_token_id=pad_token_id,
93
+ bos_token_id=bos_token_id,
94
+ eos_token_id=eos_token_id,
95
+ tie_word_embeddings=tie_word_embeddings,
96
+ **kwargs,
97
+ )
98
+
99
+ def _rope_scaling_validation(self):
100
+ """
101
+ Validate the `rope_scaling` configuration.
102
+ """
103
+ if self.rope_scaling is None:
104
+ return
105
+
106
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
107
+ raise ValueError(
108
+ "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
109
+ f"got {self.rope_scaling}"
110
+ )
111
+ rope_scaling_type = self.rope_scaling.get("type", None)
112
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
113
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
114
+ raise ValueError(
115
+ f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
116
+ )
117
+ if (
118
+ rope_scaling_factor is None
119
+ or not isinstance(rope_scaling_factor, float)
120
+ or rope_scaling_factor <= 1.0
121
+ ):
122
+ raise ValueError(
123
+ f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}"
124
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 1,
6
+ "transformers_version": "4.30.2"
7
+ }
modeling_llama_moe_hf.py ADDED
@@ -0,0 +1,1681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ import math
3
+ import warnings
4
+ from dataclasses import dataclass
5
+ from typing import Optional, Tuple
6
+
7
+ import torch
8
+ import torch.utils.checkpoint
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ from torch.distributions.normal import Normal
12
+ from transformers.modeling_outputs import (
13
+ CausalLMOutputWithPast,
14
+ )
15
+ from transformers.modeling_utils import PreTrainedModel
16
+ from transformers.activations import ACT2FN
17
+ from transformers.utils import ModelOutput, logging
18
+
19
+ from .configuration_llama_moe import LlamaMoEConfig
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ _CONFIG_FOR_DOC = "LlamaMoEConfig"
24
+
25
+
26
+ @dataclass
27
+ class CalculatorOutput(ModelOutput):
28
+ hidden_states: Optional[torch.FloatTensor] = None
29
+ num_dropped_tokens: Optional[int] = None
30
+
31
+
32
+ @dataclass
33
+ class BaseMoEModelOutputWithPast(ModelOutput):
34
+ """
35
+ Args:
36
+ num_dropped_tokens: layer idx to the number of dropped tokens
37
+ """
38
+
39
+ last_hidden_state: torch.FloatTensor = None
40
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
41
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
42
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
43
+ balance_loss: Optional[float] = None
44
+ num_dropped_tokens: Optional[Tuple[torch.Tensor]] = None
45
+ gate_load: Optional[Tuple[list]] = None
46
+ gate_importance: Optional[Tuple[list]] = None
47
+
48
+
49
+
50
+ @dataclass
51
+ class MoECausalLMOutputWithPast(CausalLMOutputWithPast):
52
+ pass
53
+ #balance_loss: Optional[float] = None
54
+ #num_dropped_tokens: Optional[Tuple[int]] = None
55
+ #gate_load: Optional[Tuple[ list[torch.Tensor]]] = None
56
+ #gate_importance: Optional[Tuple[ list[torch.Tensor]]] = None
57
+
58
+
59
+
60
+ @dataclass
61
+ class MoEMlpOutput(ModelOutput):
62
+ hidden_states: Optional[torch.FloatTensor] = None
63
+ balance_loss: Optional[torch.FloatTensor] = None
64
+ num_dropped_tokens: Optional[int] = None
65
+ gate_load: Optional[list] = None
66
+ gate_importance: Optional[list] = None
67
+
68
+
69
+ def _make_causal_mask(
70
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
71
+ ):
72
+ """
73
+ Make causal mask used for bi-directional self-attention.
74
+ """
75
+ bsz, tgt_len = input_ids_shape
76
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
77
+ mask_cond = torch.arange(mask.size(-1), device=device)
78
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
79
+ mask = mask.to(dtype)
80
+
81
+ if past_key_values_length > 0:
82
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
83
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
84
+
85
+
86
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
87
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
88
+ """
89
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
90
+ """
91
+ bsz, src_len = mask.size()
92
+ tgt_len = tgt_len if tgt_len is not None else src_len
93
+
94
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
95
+
96
+ inverted_mask = 1.0 - expanded_mask
97
+
98
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
99
+
100
+
101
+ class LlamaRMSNorm(nn.Module):
102
+ def __init__(self, hidden_size, eps=1e-6):
103
+ """
104
+ LlamaRMSNorm is equivalent to T5LayerNorm
105
+ """
106
+ super().__init__()
107
+ self.weight = nn.Parameter(torch.ones(hidden_size))
108
+ self.variance_epsilon = eps
109
+
110
+ def forward(self, hidden_states):
111
+ input_dtype = hidden_states.dtype
112
+ hidden_states = hidden_states.to(torch.float32)
113
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
114
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
115
+ return self.weight * hidden_states.to(input_dtype)
116
+
117
+
118
+ class LlamaRotaryEmbedding(torch.nn.Module):
119
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
120
+ super().__init__()
121
+
122
+ self.dim = dim
123
+ self.max_position_embeddings = max_position_embeddings
124
+ self.base = base
125
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
126
+ self.register_buffer("inv_freq", inv_freq)
127
+
128
+ # Build here to make `torch.jit.trace` work.
129
+ self._set_cos_sin_cache(
130
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
131
+ )
132
+
133
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
134
+ self.max_seq_len_cached = seq_len
135
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
136
+
137
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
138
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
139
+ emb = torch.cat((freqs, freqs), dim=-1)
140
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
141
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
142
+
143
+ def forward(self, x, seq_len=None):
144
+ # x: [bs, num_attention_heads, seq_len, head_size]
145
+ if seq_len > self.max_seq_len_cached:
146
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
147
+
148
+ return (
149
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
150
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
151
+ )
152
+
153
+
154
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
155
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
156
+
157
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
158
+ self.scaling_factor = scaling_factor
159
+ super().__init__(dim, max_position_embeddings, base, device)
160
+
161
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
162
+ self.max_seq_len_cached = seq_len
163
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
164
+ t = t / self.scaling_factor
165
+
166
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
170
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
171
+
172
+
173
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
174
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
175
+
176
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
177
+ self.scaling_factor = scaling_factor
178
+ super().__init__(dim, max_position_embeddings, base, device)
179
+
180
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
181
+ self.max_seq_len_cached = seq_len
182
+
183
+ if seq_len > self.max_position_embeddings:
184
+ base = self.base * (
185
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
186
+ ) ** (self.dim / (self.dim - 2))
187
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
188
+ self.register_buffer("inv_freq", inv_freq)
189
+
190
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
191
+
192
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
193
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
194
+ emb = torch.cat((freqs, freqs), dim=-1)
195
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
196
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
197
+
198
+
199
+ def rotate_half(x):
200
+ """Rotates half the hidden dims of the input."""
201
+ x1 = x[..., : x.shape[-1] // 2]
202
+ x2 = x[..., x.shape[-1] // 2 :]
203
+ return torch.cat((-x2, x1), dim=-1)
204
+
205
+
206
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
207
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
208
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
209
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
210
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
211
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
212
+ q_embed = (q * cos) + (rotate_half(q) * sin)
213
+ k_embed = (k * cos) + (rotate_half(k) * sin)
214
+ return q_embed, k_embed
215
+
216
+
217
+ class LlamaMLP(nn.Module):
218
+ def __init__(self, config):
219
+ super().__init__()
220
+ self.pretraining_tp = config.pretraining_tp
221
+ self.hidden_size = config.hidden_size
222
+ self.intermediate_size = config.intermediate_size
223
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
224
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
225
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
226
+ self.act_fn = ACT2FN[config.hidden_act]
227
+
228
+ def forward(self, x):
229
+ if self.pretraining_tp > 1:
230
+ slice = self.intermediate_size // self.pretraining_tp
231
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
232
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
233
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
234
+
235
+ gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
236
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
237
+
238
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
239
+ down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
240
+ down_proj = sum(down_proj)
241
+ else:
242
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
243
+
244
+ return down_proj
245
+
246
+
247
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
248
+ """
249
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
250
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
251
+ """
252
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
253
+ if n_rep == 1:
254
+ return hidden_states
255
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
256
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
257
+
258
+
259
+ class LlamaAttention(nn.Module):
260
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
261
+
262
+ def __init__(self, config: LlamaMoEConfig):
263
+ super().__init__()
264
+ self.config = config
265
+ self.hidden_size = config.hidden_size
266
+ self.num_heads = config.num_attention_heads
267
+ self.head_dim = self.hidden_size // self.num_heads
268
+ self.num_key_value_heads = config.num_key_value_heads
269
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
270
+ self.pretraining_tp = config.pretraining_tp
271
+ self.max_position_embeddings = config.max_position_embeddings
272
+
273
+ if (self.head_dim * self.num_heads) != self.hidden_size:
274
+ raise ValueError(
275
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
276
+ f" and `num_heads`: {self.num_heads})."
277
+ )
278
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
279
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
280
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
281
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
282
+ self._init_rope()
283
+
284
+ def _init_rope(self):
285
+ if self.config.rope_scaling is None:
286
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
287
+ else:
288
+ scaling_type = self.config.rope_scaling["type"]
289
+ scaling_factor = self.config.rope_scaling["factor"]
290
+ if scaling_type == "linear":
291
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
292
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
293
+ )
294
+ elif scaling_type == "dynamic":
295
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
296
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
297
+ )
298
+ else:
299
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
300
+
301
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
302
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
303
+
304
+ def forward(
305
+ self,
306
+ hidden_states: torch.Tensor,
307
+ attention_mask: Optional[torch.Tensor] = None,
308
+ position_ids: Optional[torch.LongTensor] = None,
309
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
310
+ output_attentions: bool = False,
311
+ use_cache: bool = False,
312
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
313
+ bsz, q_len, _ = hidden_states.size()
314
+
315
+ if self.pretraining_tp > 1:
316
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
317
+ query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
318
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
319
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
320
+
321
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
322
+ query_states = torch.cat(query_states, dim=-1)
323
+
324
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
325
+ key_states = torch.cat(key_states, dim=-1)
326
+
327
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
328
+ value_states = torch.cat(value_states, dim=-1)
329
+
330
+ else:
331
+ query_states = self.q_proj(hidden_states)
332
+ key_states = self.k_proj(hidden_states)
333
+ value_states = self.v_proj(hidden_states)
334
+
335
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
336
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
337
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
338
+
339
+ kv_seq_len = key_states.shape[-2]
340
+ if past_key_value is not None:
341
+ kv_seq_len += past_key_value[0].shape[-2]
342
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
343
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
344
+
345
+ if past_key_value is not None:
346
+ # reuse k, v, self_attention
347
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
348
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
349
+
350
+ past_key_value = (key_states, value_states) if use_cache else None
351
+
352
+ # repeat k/v heads if n_kv_heads < n_heads
353
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
354
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
355
+
356
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
357
+
358
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
359
+ raise ValueError(
360
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
361
+ f" {attn_weights.size()}"
362
+ )
363
+
364
+ if attention_mask is not None:
365
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
366
+ raise ValueError(
367
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
368
+ )
369
+ attn_weights = attn_weights + attention_mask
370
+
371
+ # upcast attention to fp32
372
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
373
+ attn_output = torch.matmul(attn_weights, value_states)
374
+
375
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
376
+ raise ValueError(
377
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
378
+ f" {attn_output.size()}"
379
+ )
380
+
381
+ attn_output = attn_output.transpose(1, 2).contiguous()
382
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
383
+
384
+ if self.pretraining_tp > 1:
385
+ attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
386
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
387
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
388
+ else:
389
+ attn_output = self.o_proj(attn_output)
390
+
391
+ if not output_attentions:
392
+ attn_weights = None
393
+
394
+ return attn_output, attn_weights, past_key_value
395
+
396
+
397
+ class TopKBalancedNoisyGate(nn.Module):
398
+ def __init__(
399
+ self,
400
+ input_size,
401
+ num_experts,
402
+ num_selects,
403
+ gate_network="mlp",
404
+ use_softmax=True,
405
+ use_balance=True,
406
+ balance_loss_weight=1e-2,
407
+ add_noise=True,
408
+ noise_epsilon=1e-2,
409
+ ):
410
+ super(TopKBalancedNoisyGate, self).__init__()
411
+ assert num_selects <= num_experts
412
+ self.input_size = input_size
413
+ self.num_experts = num_experts
414
+ self.num_selects = num_selects
415
+
416
+ self.gate_network_type = gate_network
417
+ self.gate_network = self.get_gate_network(gate_network, input_size, num_experts)
418
+
419
+ self.use_softmax = use_softmax
420
+ self.softmax = nn.Softmax(1)
421
+
422
+ self.use_balance = use_balance
423
+ self.balance_loss_weight = balance_loss_weight
424
+
425
+ # add_noise
426
+ self.add_noise = add_noise
427
+ self.noise_epsilon = noise_epsilon
428
+ self.warned = False
429
+ if self.add_noise:
430
+ self.weight_noise = nn.Linear(input_size, num_experts, bias=False)
431
+ self.weight_noise.weight.data = torch.zeros(
432
+ (num_experts, input_size),
433
+ requires_grad=True,
434
+ device=self.weight_noise.weight.data.device,
435
+ dtype=self.weight_noise.weight.data.dtype,
436
+ )
437
+ self.mean = 0.0
438
+ self.std = 1.0
439
+ self.normal = Normal(self.mean, self.std)
440
+ self.softplus = nn.Softplus()
441
+
442
+ self.reset_parameters()
443
+
444
+ def get_gate_network(self, gate_type, input_size, num_experts):
445
+ gate_type = gate_type.lower()
446
+
447
+ if gate_type == "linear":
448
+ gate_network = nn.Linear(input_size, num_experts, bias=False)
449
+ nn.init.zeros_(gate_network.weight)
450
+ elif gate_type == "mlp":
451
+ gate_network = torch.nn.Sequential(
452
+ torch.nn.Linear(input_size, num_experts, bias=False),
453
+ torch.nn.Tanh(),
454
+ torch.nn.Linear(num_experts, num_experts, bias=False),
455
+ )
456
+ else:
457
+ raise ValueError(f'Unexpected gate_type: {gate_type}.')
458
+
459
+ return gate_network
460
+
461
+ def reset_gate_network(self):
462
+ if "gate_network_type" not in vars(self):
463
+ raise KeyError(f"{type(self)} does not have a gate network.")
464
+ else:
465
+ self.gate_network = self.get_gate_network(
466
+ self.gate_network_type, self.input_size, self.num_experts
467
+ )
468
+
469
+ def reset_parameters(self):
470
+ if self.add_noise:
471
+ nn.init.zeros_(self.weight_noise.weight)
472
+ # nn.init.zeros_(self.weight_noise)
473
+
474
+ def cv_squared(self, x, eps=1e-10):
475
+ """The squared coefficient of variation of a sample.
476
+ Useful as a loss to encourage a positive distribution to be more uniform.
477
+ Epsilons added for numerical stability.
478
+ Returns 0 for an empty Tensor.
479
+ Args:
480
+ x: a `Tensor`.
481
+ Returns:
482
+ a `Scalar`.s
483
+ """
484
+ if x.shape[0] == 1:
485
+ return torch.tensor(0.0, device=x.device)
486
+ return x.float().var() / (x.float().mean() ** 2 + eps)
487
+
488
+ def forward(self, x):
489
+ logits_gate = self.gate_network(x)
490
+ if self.training and self.add_noise:
491
+ noise_mm = self.weight_noise(x)
492
+ noise_control = self.softplus(noise_mm) + self.noise_epsilon
493
+ logits_noise = torch.randn_like(logits_gate) * noise_control
494
+ logits = logits_gate + logits_noise
495
+ else:
496
+ logits = logits_gate
497
+
498
+ top_logits, top_indices = logits.topk(min(self.num_selects + 1, self.num_experts), dim=1) # 选择并排序前k+1个权重
499
+ top_k_logits = top_logits[:, :self.num_selects]
500
+ top_k_indices = top_indices[:, :self.num_selects]
501
+ top_k_scores = self.softmax(top_k_logits.to(torch.float32)) if self.use_softmax else top_k_logits
502
+ top_k_scores = top_k_scores.to(logits.dtype)
503
+
504
+ zeros = torch.zeros_like(logits, requires_grad=True, device=logits.device)
505
+ scores_filtered = zeros.scatter(dim=1, index=top_k_indices, src=top_k_scores) # shape(batch_size, num_experts)
506
+ importance = scores_filtered.sum(0) # shape(num_experts)
507
+
508
+ if self.training:
509
+ if self.add_noise and self.num_selects != self.num_experts:
510
+ batch_size = top_logits.size(0)
511
+ m = top_logits.size(1)
512
+ top_values_flat = top_logits.flatten()
513
+ threshold_positions_if_in = torch.arange(batch_size, device=x.device) * m + self.num_selects
514
+ threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
515
+ is_in = torch.gt(logits_noise, threshold_if_in)
516
+ threshold_positions_if_out = threshold_positions_if_in - 1
517
+ threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1)
518
+ # is each value currently in the top k.
519
+ prob_if_in = self.normal.cdf((logits_gate - threshold_if_in) / noise_control)
520
+ prob_if_out = self.normal.cdf((logits_gate - threshold_if_out) / noise_control)
521
+ prob = torch.where(is_in, prob_if_in, prob_if_out)
522
+ load = prob.sum(0)
523
+ else:
524
+ load = (scores_filtered > 0).sum(0)
525
+ if not self.add_noise and not self.warned:
526
+ warnings.warn('Gradient-trackable implementation for load calculation is only available when "add_noise=True". '
527
+ 'Training without noise will block the gradient from "load" path and lead to inconsistency in optimization objectives.')
528
+ self.warned = True
529
+ else:
530
+ load = (scores_filtered > 0).sum(0)
531
+
532
+ if self.use_balance:
533
+ balance_loss = self.cv_squared(importance) + self.cv_squared(load)
534
+ balance_loss *= self.balance_loss_weight
535
+ else:
536
+ balance_loss = torch.tensor(-100.0, device=x.device)
537
+
538
+ return {
539
+ "topK_indices": top_k_indices,
540
+ "topK_scores": top_k_scores,
541
+ "balance_loss": balance_loss,
542
+ "load": load,
543
+ "importance": importance,
544
+ }
545
+
546
+
547
+ class LinearGLUExperts(nn.Module):
548
+ """
549
+ Modified from transformers.models.llama.modeling_llama.LlamaMLP
550
+ """
551
+
552
+ __constants__ = [
553
+ "bias",
554
+ "in_features",
555
+ "hidden_features",
556
+ "out_features",
557
+ "hidden_act",
558
+ "num_experts",
559
+ "size_experts",
560
+ ]
561
+
562
+ def __init__(
563
+ self,
564
+ in_features,
565
+ hidden_features,
566
+ out_features,
567
+ hidden_act,
568
+ num_experts,
569
+ size_experts=None,
570
+ bias=True,
571
+ device=None,
572
+ dtype=None,
573
+ ):
574
+ factory_kwargs = {"device": device, "dtype": dtype}
575
+ super(LinearGLUExperts, self).__init__()
576
+ self.in_features = in_features
577
+ self.hidden_features = hidden_features
578
+ self.out_features = out_features
579
+ self.hidden_act = hidden_act
580
+ self.num_experts = num_experts
581
+
582
+ if size_experts is None:
583
+ # all experts share the same number of hidden neurons
584
+ assert hidden_features % num_experts == 0
585
+ size_per_expert = hidden_features // num_experts
586
+ size_experts = [size_per_expert for _ in range(num_experts)]
587
+ else:
588
+ # use specified expert sizes
589
+ assert (
590
+ len(size_experts) == num_experts
591
+ and sum(size_experts) == hidden_features
592
+ )
593
+ self.size_experts = size_experts
594
+
595
+ self.act_fn = ACT2FN[hidden_act]
596
+
597
+ self.weight_gate = nn.ParameterList()
598
+ self.weight_up = nn.ParameterList()
599
+ self.weight_down = nn.ParameterList()
600
+
601
+ for i in range(num_experts):
602
+ # this matrix will be transposed when performing linear forwarding
603
+ this_expert_weight_gate = nn.Parameter(
604
+ torch.empty((size_experts[i], in_features), **factory_kwargs)
605
+ )
606
+ # this matrix will be transposed when performing linear forwarding
607
+ this_expert_weight_up = nn.Parameter(
608
+ torch.empty((size_experts[i], in_features), **factory_kwargs)
609
+ )
610
+ # this matrix will be transposed when performing linear forwarding
611
+ this_expert_weight_down = nn.Parameter(
612
+ torch.empty((out_features, size_experts[i]), **factory_kwargs)
613
+ )
614
+ self.weight_gate.append(this_expert_weight_gate)
615
+ self.weight_up.append(this_expert_weight_up)
616
+ self.weight_down.append(this_expert_weight_down)
617
+
618
+ if bias:
619
+ self.bias_gate = nn.ParameterList()
620
+ self.bias_up = nn.ParameterList()
621
+ self.bias_down = nn.ParameterList()
622
+
623
+ for i in range(num_experts):
624
+ this_expert_bias_gate = nn.Parameter(
625
+ torch.empty((size_experts[i],), **factory_kwargs)
626
+ )
627
+ this_expert_bias_up = nn.Parameter(
628
+ torch.empty((size_experts[i],), **factory_kwargs)
629
+ )
630
+ this_expert_bias_down = nn.Parameter(
631
+ torch.empty((out_features,), **factory_kwargs)
632
+ )
633
+ self.bias_gate.append(this_expert_bias_gate)
634
+ self.bias_up.append(this_expert_bias_up)
635
+ self.bias_down.append(this_expert_bias_down)
636
+ else:
637
+ self.register_parameter("bias_gate", None)
638
+ self.register_parameter("bias_up", None)
639
+ self.register_parameter("bias_down", None)
640
+
641
+ self.reset_parameters()
642
+
643
+ def reset_parameters(self):
644
+ for i in range(self.num_experts):
645
+ nn.init.kaiming_uniform_(self.weight_gate[i], a=math.sqrt(5))
646
+ nn.init.kaiming_uniform_(self.weight_up[i], a=math.sqrt(5))
647
+ nn.init.kaiming_uniform_(self.weight_down[i], a=math.sqrt(5))
648
+ if self.bias_gate is not None:
649
+ fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_gate[i])
650
+ bound = 1 / math.sqrt(fan_in)
651
+ nn.init.uniform_(self.bias_gate[i], -bound, bound)
652
+ if self.bias_up is not None:
653
+ fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_up[i])
654
+ bound = 1 / math.sqrt(fan_in)
655
+ nn.init.uniform_(self.bias_up[i], -bound, bound)
656
+ if self.bias_down is not None:
657
+ fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_down[i])
658
+ bound = 1 / math.sqrt(fan_in)
659
+ nn.init.uniform_(self.bias_down[i], -bound, bound)
660
+
661
+ def forward(self, input, i):
662
+ gate = self.act_fn(
663
+ F.linear(
664
+ input,
665
+ self.weight_gate[i],
666
+ self.bias_gate[i] if self.bias_gate is not None else None,
667
+ )
668
+ )
669
+ up = F.linear(
670
+ input,
671
+ self.weight_up[i],
672
+ self.bias_up[i] if self.bias_up is not None else None,
673
+ )
674
+ down = F.linear(
675
+ gate * up,
676
+ self.weight_down[i],
677
+ self.bias_down[i] if self.bias_down is not None else None,
678
+ )
679
+ return down
680
+
681
+ def extra_repr(self):
682
+ return (
683
+ "in_features={}, hidden_features={}, out_features={}, hidden_act={},"
684
+ " num_experts={}, size_experts={}, bias={}".format(
685
+ self.in_features,
686
+ self.hidden_features,
687
+ self.out_features,
688
+ self.hidden_act,
689
+ self.num_experts,
690
+ self.size_experts,
691
+ self.bias_gate is not None,
692
+ )
693
+ )
694
+
695
+
696
+ class UniversalCalculator(nn.Module):
697
+ def __init__(
698
+ self,
699
+ experts: LinearGLUExperts,
700
+ multiply_gate_scores=True,
701
+ score_scale_factor=1.0,
702
+ add_weight_norm: bool = False,
703
+ ):
704
+ super(UniversalCalculator, self).__init__()
705
+ self.experts = experts
706
+ # TODO (zhutong): use vmap to boost the training efficiency
707
+ # self.experts_vmap = torch.vmap(self.experts)
708
+ self.multiply_gate_scores = multiply_gate_scores
709
+ self.score_scale_factor = score_scale_factor
710
+ self.num_experts = experts.num_experts
711
+ self.mlp_norm = None
712
+ if multiply_gate_scores and add_weight_norm:
713
+ raise NotImplementedError
714
+
715
+ def reset_experts(self):
716
+ self.experts.reset_parameters()
717
+
718
+ def forward(
719
+ self, x, topK_indices, topK_scores, expert_batch_size=None, **kwargs
720
+ ) -> CalculatorOutput:
721
+ batch_size = topK_indices.size(0) # topK_indices: (bsz*seq_len, num_selects)
722
+ num_selects = topK_indices.size(1)
723
+ topK_indices = topK_indices.flatten() # shape(batch_size*num_selects)
724
+ topK_scores = topK_scores.flatten() # shape(batch_size*num_selects)
725
+ batch_indices = torch.arange(
726
+ batch_size, device=topK_scores.device
727
+ ).repeat_interleave(num_selects)
728
+
729
+ _, index_sorted_topK_indices = topK_indices.sort(0)
730
+
731
+ sorted_topK_scores = topK_scores.index_select(0, index_sorted_topK_indices)
732
+ sorted_batch_indices = batch_indices.index_select(0, index_sorted_topK_indices)
733
+
734
+ if expert_batch_size is None:
735
+ expert_batch_size = topK_indices.bincount(
736
+ minlength=self.num_experts
737
+ ).tolist()
738
+
739
+ sorted_x = x.index_select(0, sorted_batch_indices)
740
+ split_x = torch.split(sorted_x, expert_batch_size, dim=0)
741
+
742
+ expert_outputs = [
743
+ self.experts(split_x[i], i)
744
+ for i in range(self.num_experts)
745
+ if split_x[i].shape[0] > 0
746
+ ]
747
+
748
+ # (bsz*seq_len*num_selects, hidden_size)
749
+ cat_expert_outputs = torch.cat(expert_outputs, 0)
750
+ output_dim = cat_expert_outputs.size(1)
751
+ if self.multiply_gate_scores:
752
+ if self.mlp_norm is None:
753
+ cat_expert_outputs = torch.mul(
754
+ cat_expert_outputs,
755
+ sorted_topK_scores.reshape(-1, 1) * self.score_scale_factor,
756
+ )
757
+ # cat_expert_outputs = torch.mul(cat_expert_outputs, sorted_topK_scores.reshape(-1, 1) * 1.0)
758
+ else:
759
+ cat_expert_outputs = torch.mul(
760
+ cat_expert_outputs, sorted_topK_scores.reshape(-1, 1)
761
+ )
762
+ cat_expert_outputs = self.mlp_norm(cat_expert_outputs)
763
+
764
+ zeros = torch.zeros(
765
+ (batch_size, output_dim),
766
+ device=cat_expert_outputs.device,
767
+ dtype=cat_expert_outputs.dtype,
768
+ )
769
+ y = zeros.index_add(0, sorted_batch_indices, cat_expert_outputs)
770
+
771
+ return CalculatorOutput(hidden_states=y, num_dropped_tokens=torch.tensor(-1.0))
772
+
773
+
774
+ class BaseMoELayer(nn.Module):
775
+ def __init__(self):
776
+ super(BaseMoELayer, self).__init__()
777
+
778
+ self.gate: TopKBalancedNoisyGate
779
+ self.calculator: UniversalCalculator
780
+
781
+ def _create_gate(self, **kwargs):
782
+ self.gate_type = kwargs.get("gate_type", "TopKBalancedNoisyGate")
783
+
784
+ if self.gate_type == "TopKBalancedNoisyGate": # noisy gate
785
+ self.gate = TopKBalancedNoisyGate(
786
+ self.input_size,
787
+ self.num_experts,
788
+ self.num_selects,
789
+ gate_network=kwargs.get("gate_network", "mlp"),
790
+ use_softmax=kwargs.get("gate_use_softmax", True),
791
+ use_balance=kwargs.get("gate_use_balance", True),
792
+ balance_loss_weight=kwargs.get("gate_balance_loss_weight", 1e-2),
793
+ add_noise=kwargs.get("gate_add_noise", True),
794
+ noise_epsilon=kwargs.get("gate_noise_epsilon", 1e-2),
795
+ )
796
+ else:
797
+ raise NotImplementedError
798
+
799
+ def _create_calculator(self, experts, **kwargs):
800
+ self.calculator_type = kwargs.get("calculator_type", "UniversalCalculator")
801
+
802
+ if self.calculator_type == "UniversalCalculator": # top K calculator
803
+ self.calculator = UniversalCalculator(
804
+ experts,
805
+ multiply_gate_scores=kwargs.get("multiply_gate_scores", True),
806
+ score_scale_factor=kwargs.get("score_scale_factor", 1.0),
807
+ add_weight_norm=kwargs.get("add_weight_norm", False),
808
+ )
809
+ else:
810
+ raise NotImplementedError
811
+
812
+ def forward(self, x) -> MoEMlpOutput:
813
+ original_shape = x.shape[:-1]
814
+ x = x.reshape(-1, self.input_size)
815
+ gate_outputs: dict = self.gate(x)
816
+ calc_outs: CalculatorOutput = self.calculator(x, **gate_outputs)
817
+ y = calc_outs.hidden_states
818
+ y = y.reshape(original_shape + (self.output_size,))
819
+
820
+ return MoEMlpOutput(
821
+ hidden_states=y,
822
+ balance_loss=gate_outputs.get("balance_loss"),
823
+ num_dropped_tokens=calc_outs.num_dropped_tokens,
824
+ gate_load=gate_outputs.get("load", torch.tensor(-1)),
825
+ gate_importance=gate_outputs.get("importance", torch.tensor(-1)),
826
+ )
827
+
828
+ def set_num_selects(self, num_selects):
829
+ if "num_selects" not in vars(self.gate):
830
+ raise KeyError(f'{self.gate_type} does not have a key named "num_selects".')
831
+ elif num_selects > self.gate.num_experts:
832
+ raise ValueError(
833
+ 'The value of "num_selects" must satisfy "num_selects <= num_experts"!'
834
+ )
835
+ elif self.gate_type in ("SwitchBalancedGate",):
836
+ raise ValueError(
837
+ f"{self.gate_type} doesn't support manually setting num_selects."
838
+ )
839
+ else:
840
+ self.num_selects = num_selects
841
+ self.gate.num_selects = num_selects
842
+
843
+ def set_gate_use_softmax(self, use_softmax):
844
+ if "use_softmax" not in vars(self.gate):
845
+ raise KeyError(f'{self.gate_type} does not have a key named "use_softmax".')
846
+ else:
847
+ self.gate.use_softmax = use_softmax
848
+
849
+ def set_gate_use_balance(self, use_balance):
850
+ if "use_balance" not in vars(self.gate):
851
+ raise KeyError(f'{self.gate_type} does not have a key named "use_balance".')
852
+ else:
853
+ self.gate.use_balance = use_balance
854
+
855
+ def set_gate_balance_loss_weight(self, balance_loss_weight):
856
+ if "balance_loss_weight" not in vars(self.gate):
857
+ raise KeyError(
858
+ f'{self.gate_type} does not have a key named "balance_loss_weight".'
859
+ )
860
+ else:
861
+ self.gate.balance_loss_weight = balance_loss_weight
862
+
863
+ def set_gate_add_noise(self, add_noise):
864
+ if "add_noise" not in vars(self.gate):
865
+ raise KeyError(f'{self.gate_type} does not have a key named "add_noise".')
866
+ else:
867
+ self.gate.add_noise = add_noise
868
+
869
+ def set_gate_noise_epsilon(self, noise_epsilon):
870
+ if "noise_epsilon" not in vars(self.gate):
871
+ raise KeyError(
872
+ f'{self.gate_type} does not have a key named "noise_epsilon".'
873
+ )
874
+ else:
875
+ self.gate.noise_epsilon = noise_epsilon
876
+
877
+ def set_calculator_multiply_gate_scores(self, multiply_gate_scores):
878
+ if "multiply_gate_scores" not in vars(self.calculator):
879
+ raise KeyError(
880
+ f'{self.gate_type} does not have a key named "multiply_gate_scores".'
881
+ )
882
+ else:
883
+ self.calculator.multiply_gate_scores = multiply_gate_scores
884
+
885
+ def set_calculator_score_scale_factor(self, score_scale_factor):
886
+ if "score_scale_factor" not in vars(self.calculator):
887
+ raise KeyError(
888
+ f'{self.gate_type} does not have a key named "score_scale_factor".'
889
+ )
890
+ else:
891
+ self.calculator.score_scale_factor = score_scale_factor
892
+
893
+ def set_calculator_drop_tokens(self, drop_tokens):
894
+ if "drop_tokens" not in vars(self.calculator):
895
+ raise KeyError(f'{self.gate_type} does not have a key named "drop_tokens".')
896
+ elif (
897
+ drop_tokens
898
+ and self.calculator.dropped_padding != "zero"
899
+ and self.input_size != self.output_size
900
+ ):
901
+ warnings.warn(
902
+ 'Setting "drop_tokens=True" without zero dropped padding when "input_size != output_size" will cause error!'
903
+ )
904
+ else:
905
+ self.calculator.drop_tokens = drop_tokens
906
+
907
+ def set_calculator_dropped_padding(self, dropped_padding):
908
+ if "dropped_padding" not in vars(self.calculator):
909
+ raise KeyError(
910
+ f'{self.gate_type} does not have a key named "dropped_padding".'
911
+ )
912
+ elif dropped_padding not in self.calculator.available_dropped_padding_choices:
913
+ raise ValueError(
914
+ f"'dropped_padding' type not available! (available choices: {self.calculator.available_dropped_padding_choices})"
915
+ )
916
+ elif (
917
+ self.calculator.drop_tokens
918
+ and dropped_padding != "zero"
919
+ and self.input_size != self.output_size
920
+ ):
921
+ warnings.warn(
922
+ f'Setting "dropped_padding={dropped_padding}" with "drop_tokens=True" when "input_size != output_size" will cause error!'
923
+ )
924
+ else:
925
+ self.calculator.dropped_padding = dropped_padding
926
+
927
+ def set_calculator_capacity_factor(self, capacity_factor):
928
+ if "capacity_factor" not in vars(self.calculator):
929
+ raise KeyError(
930
+ f'{self.gate_type} does not have a key named "capacity_factor".'
931
+ )
932
+ else:
933
+ self.calculator.capacity_factor = capacity_factor
934
+
935
+ def reset_gate_network(self):
936
+ self.gate.reset_gate_network()
937
+
938
+ def reset_experts(self):
939
+ self.calculator.reset_experts()
940
+
941
+
942
+ class LinearGLUMoELayer(BaseMoELayer):
943
+ def __init__(
944
+ self,
945
+ input_size,
946
+ hidden_size,
947
+ output_size,
948
+ hidden_act,
949
+ num_experts,
950
+ num_selects,
951
+ size_experts=None,
952
+ bias=True,
953
+ **kwargs,
954
+ ):
955
+ super(LinearGLUMoELayer, self).__init__()
956
+ assert num_selects <= num_experts
957
+ self.input_size = input_size
958
+ self.hidden_size = hidden_size
959
+ self.output_size = output_size
960
+ self.hidden_act = hidden_act
961
+ self.num_experts = num_experts
962
+ self.num_selects = num_selects
963
+ self.size_experts = size_experts
964
+ self.bias = bias
965
+
966
+ experts = LinearGLUExperts(
967
+ input_size,
968
+ hidden_size,
969
+ output_size,
970
+ hidden_act,
971
+ num_experts,
972
+ size_experts=size_experts,
973
+ bias=bias,
974
+ )
975
+
976
+ self._create_gate(**kwargs)
977
+ self._create_calculator(experts, **kwargs)
978
+
979
+
980
+ class LlamaMoEDecoderLayer(nn.Module):
981
+ def __init__(self, config: LlamaMoEConfig, layer_index):
982
+ super().__init__()
983
+
984
+ self.hidden_size = config.hidden_size
985
+ self.self_attn = LlamaAttention(config=config)
986
+ self.mlp = LlamaMLP(config)
987
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
988
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
989
+
990
+ gating_config = {
991
+ # all gates
992
+ "gate_type": config.gate_type,
993
+ "gate_network": config.gate_network,
994
+ "gate_use_softmax": config.gate_use_softmax,
995
+ "gate_use_balance": config.gate_use_balance,
996
+ "gate_balance_loss_weight": config.gate_balance_loss_weight,
997
+ "gate_add_noise": config.gate_add_noise,
998
+ # TopKBalancedNoisyGate
999
+ "gate_noise_epsilon": config.gate_noise_epsilon,
1000
+ }
1001
+ calculator_config = {
1002
+ # all calculators
1003
+ "calculator_type": config.calculator_type,
1004
+ "multiply_gate_scores": config.multiply_gate_scores,
1005
+ "score_scale_factor": (
1006
+ config.score_scale_factor[layer_index]
1007
+ if isinstance(config.score_scale_factor, list)
1008
+ else config.score_scale_factor
1009
+ ),
1010
+ "add_weight_norm": config.add_weight_norm,
1011
+ # SwitchDropTokenCalculator
1012
+ "drop_tokens": config.drop_tokens,
1013
+ "dropped_padding": config.dropped_padding,
1014
+ "capacity_factor": config.capacity_factor,
1015
+ }
1016
+
1017
+ self.mlp = LinearGLUMoELayer(
1018
+ input_size=self.hidden_size,
1019
+ hidden_size=config.intermediate_size,
1020
+ output_size=self.hidden_size,
1021
+ hidden_act=config.hidden_act,
1022
+ num_experts=config.num_experts,
1023
+ num_selects=config.num_selects,
1024
+ size_experts=(
1025
+ config.size_experts[layer_index]
1026
+ if config.size_experts is not None
1027
+ else None
1028
+ ),
1029
+ bias=False,
1030
+ **gating_config,
1031
+ **calculator_config,
1032
+ )
1033
+
1034
+ def forward(
1035
+ self,
1036
+ hidden_states,
1037
+ attention_mask=None,
1038
+ position_ids=None,
1039
+ past_key_value=None,
1040
+ output_attentions=False,
1041
+ use_cache=False,
1042
+ ) -> tuple:
1043
+ residual = hidden_states
1044
+ hidden_states = self.input_layernorm(hidden_states)
1045
+
1046
+ # Self Attention
1047
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1048
+ hidden_states=hidden_states,
1049
+ attention_mask=attention_mask,
1050
+ position_ids=position_ids,
1051
+ past_key_value=past_key_value,
1052
+ output_attentions=output_attentions,
1053
+ use_cache=use_cache,
1054
+ )
1055
+ hidden_states = residual + hidden_states
1056
+
1057
+ # Fully Connected
1058
+ residual = hidden_states
1059
+ hidden_states = self.post_attention_layernorm(hidden_states)
1060
+ mlp_outs: MoEMlpOutput = self.mlp(hidden_states)
1061
+ hidden_states = residual + mlp_outs.hidden_states
1062
+
1063
+ outputs = (
1064
+ hidden_states,
1065
+ mlp_outs.balance_loss,
1066
+ mlp_outs.num_dropped_tokens,
1067
+ mlp_outs.gate_load,
1068
+ mlp_outs.gate_importance,
1069
+ )
1070
+ if output_attentions:
1071
+ outputs += (self_attn_weights,)
1072
+ if use_cache:
1073
+ outputs += (present_key_value,)
1074
+
1075
+ return outputs
1076
+
1077
+ def set_moe_num_selects(self, num_selects):
1078
+ self.mlp.set_num_selects(num_selects)
1079
+
1080
+ def set_moe_gate_use_softmax(self, use_softmax):
1081
+ self.mlp.set_gate_use_softmax(use_softmax)
1082
+
1083
+ def set_moe_gate_use_balance(self, use_balance):
1084
+ self.mlp.set_gate_use_balance(use_balance)
1085
+
1086
+ def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
1087
+ self.mlp.set_gate_balance_loss_weight(balance_loss_weight)
1088
+
1089
+ def set_moe_gate_add_noise(self, add_noise):
1090
+ self.mlp.set_gate_add_noise(add_noise)
1091
+
1092
+ def set_moe_gate_noise_epsilon(self, noise_epsilon):
1093
+ self.mlp.set_gate_noise_epsilon(noise_epsilon)
1094
+
1095
+ def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
1096
+ self.mlp.set_calculator_multiply_gate_scores(multiply_gate_scores)
1097
+
1098
+ def set_moe_calculator_score_scale_factor(self, score_scale_factor):
1099
+ self.mlp.set_calculator_score_scale_factor(score_scale_factor)
1100
+
1101
+ def set_moe_calculator_drop_tokens(self, drop_tokens):
1102
+ self.mlp.set_calculator_drop_tokens(drop_tokens)
1103
+
1104
+ def set_moe_calculator_dropped_padding(self, dropped_padding):
1105
+ self.mlp.set_calculator_dropped_padding(dropped_padding)
1106
+
1107
+ def set_moe_calculator_capacity_factor(self, capacity_factor):
1108
+ self.mlp.set_calculator_capacity_factor(capacity_factor)
1109
+
1110
+ def reset_gate_network(self):
1111
+ self.mlp.reset_gate_network()
1112
+
1113
+ def reset_experts(self):
1114
+ self.mlp.reset_experts()
1115
+
1116
+
1117
+ class LlamaMoEPreTrainedModel(PreTrainedModel):
1118
+ config_class = LlamaMoEConfig
1119
+ base_model_prefix = "model"
1120
+ supports_gradient_checkpointing = True
1121
+ _no_split_modules = ["LlamaMoEDecoderLayer"]
1122
+ _skip_keys_device_placement = "past_key_values"
1123
+
1124
+ def _init_weights(self, module):
1125
+ std = self.config.initializer_range
1126
+ if isinstance(module, nn.Linear):
1127
+ module.weight.data.normal_(mean=0.0, std=std)
1128
+ if module.bias is not None:
1129
+ module.bias.data.zero_()
1130
+ elif isinstance(module, nn.Embedding):
1131
+ module.weight.data.normal_(mean=0.0, std=std)
1132
+ if module.padding_idx is not None:
1133
+ module.weight.data[module.padding_idx].zero_()
1134
+
1135
+ def _set_gradient_checkpointing(self, module, value=False):
1136
+ if isinstance(module, LlamaMoEModel):
1137
+ module.gradient_checkpointing = value
1138
+
1139
+
1140
+ class LlamaMoEModel(LlamaMoEPreTrainedModel):
1141
+ def __init__(self, config: LlamaMoEConfig):
1142
+ super().__init__(config)
1143
+ self.padding_idx = config.pad_token_id
1144
+ self.vocab_size = config.vocab_size
1145
+
1146
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1147
+ self.layers = nn.ModuleList(
1148
+ [LlamaMoEDecoderLayer(config, i) for i in range(config.num_hidden_layers)]
1149
+ )
1150
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1151
+ self.gradient_checkpointing = False
1152
+ self.post_init()
1153
+
1154
+ def get_input_embeddings(self):
1155
+ return self.embed_tokens
1156
+
1157
+ def set_input_embeddings(self, value):
1158
+ self.embed_tokens = value
1159
+
1160
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
1161
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
1162
+ # create causal mask
1163
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1164
+ combined_attention_mask = None
1165
+ if input_shape[-1] > 1:
1166
+ combined_attention_mask = _make_causal_mask(
1167
+ input_shape,
1168
+ inputs_embeds.dtype,
1169
+ device=inputs_embeds.device,
1170
+ past_key_values_length=past_key_values_length,
1171
+ )
1172
+
1173
+ if attention_mask is not None:
1174
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1175
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
1176
+ inputs_embeds.device
1177
+ )
1178
+ combined_attention_mask = (
1179
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
1180
+ )
1181
+
1182
+ return combined_attention_mask
1183
+
1184
+ def forward(
1185
+ self,
1186
+ input_ids=None,
1187
+ attention_mask=None,
1188
+ position_ids=None,
1189
+ past_key_values=None,
1190
+ inputs_embeds=None,
1191
+ use_cache=None,
1192
+ output_attentions=None,
1193
+ output_hidden_states=None,
1194
+ return_dict=None,
1195
+ ):
1196
+ output_attentions = (
1197
+ output_attentions
1198
+ if output_attentions is not None
1199
+ else self.config.output_attentions
1200
+ )
1201
+ output_hidden_states = (
1202
+ output_hidden_states
1203
+ if output_hidden_states is not None
1204
+ else self.config.output_hidden_states
1205
+ )
1206
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1207
+
1208
+ return_dict = (
1209
+ return_dict if return_dict is not None else self.config.use_return_dict
1210
+ )
1211
+
1212
+ # retrieve input_ids and inputs_embeds
1213
+ if input_ids is not None and inputs_embeds is not None:
1214
+ raise ValueError(
1215
+ "You cannot specify both decoder_input_ids and decoder_inputs_embeds at"
1216
+ " the same time"
1217
+ )
1218
+ elif input_ids is not None:
1219
+ batch_size, seq_length = input_ids.shape
1220
+ elif inputs_embeds is not None:
1221
+ batch_size, seq_length, _ = inputs_embeds.shape
1222
+ else:
1223
+ raise ValueError(
1224
+ "You have to specify either decoder_input_ids or decoder_inputs_embeds"
1225
+ )
1226
+
1227
+ seq_length_with_past = seq_length
1228
+ past_key_values_length = 0
1229
+
1230
+ if past_key_values is not None:
1231
+ past_key_values_length = past_key_values[0][0].shape[2]
1232
+ seq_length_with_past = seq_length_with_past + past_key_values_length
1233
+
1234
+ if position_ids is None:
1235
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1236
+ position_ids = torch.arange(
1237
+ past_key_values_length,
1238
+ seq_length + past_key_values_length,
1239
+ dtype=torch.long,
1240
+ device=device,
1241
+ )
1242
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1243
+ else:
1244
+ position_ids = position_ids.view(-1, seq_length).long()
1245
+
1246
+ if inputs_embeds is None:
1247
+ inputs_embeds = self.embed_tokens(input_ids)
1248
+ # embed positions
1249
+ if attention_mask is None:
1250
+ attention_mask = torch.ones(
1251
+ (batch_size, seq_length_with_past),
1252
+ dtype=torch.bool,
1253
+ device=inputs_embeds.device,
1254
+ )
1255
+ attention_mask = self._prepare_decoder_attention_mask(
1256
+ attention_mask,
1257
+ (batch_size, seq_length),
1258
+ inputs_embeds,
1259
+ past_key_values_length,
1260
+ )
1261
+
1262
+ hidden_states = inputs_embeds
1263
+ balance_loss = 0.0
1264
+
1265
+ if self.gradient_checkpointing and self.training:
1266
+ if use_cache:
1267
+ logger.warning_once(
1268
+ "`use_cache=True` is incompatible with gradient checkpointing."
1269
+ " Setting `use_cache=False`..."
1270
+ )
1271
+ use_cache = False
1272
+
1273
+ # decoder layers
1274
+ all_hidden_states = () if output_hidden_states else None
1275
+ all_self_attns = () if output_attentions else None
1276
+ next_decoder_cache = () if use_cache else None
1277
+
1278
+ num_dropped_tokens = ()
1279
+ gate_load = ()
1280
+ gate_importance = ()
1281
+ for idx, decoder_layer in enumerate(self.layers):
1282
+ if output_hidden_states:
1283
+ all_hidden_states += (hidden_states,)
1284
+
1285
+ past_key_value = (
1286
+ past_key_values[idx] if past_key_values is not None else None
1287
+ )
1288
+
1289
+ if self.gradient_checkpointing and self.training:
1290
+
1291
+ def create_custom_forward(module):
1292
+ def custom_forward(*inputs):
1293
+ # None for past_key_value
1294
+ return module(*inputs, output_attentions, None)
1295
+
1296
+ return custom_forward
1297
+
1298
+ layer_outputs: tuple = torch.utils.checkpoint.checkpoint(
1299
+ create_custom_forward(decoder_layer),
1300
+ hidden_states,
1301
+ attention_mask,
1302
+ position_ids,
1303
+ None,
1304
+ )
1305
+ else:
1306
+ layer_outputs: tuple = decoder_layer(
1307
+ hidden_states,
1308
+ attention_mask=attention_mask,
1309
+ position_ids=position_ids,
1310
+ past_key_value=past_key_value,
1311
+ output_attentions=output_attentions,
1312
+ use_cache=use_cache,
1313
+ )
1314
+
1315
+ hidden_states = layer_outputs[0]
1316
+ if layer_outputs[1] is not None:
1317
+ balance_loss += layer_outputs[1]
1318
+
1319
+ if use_cache:
1320
+ next_decoder_cache += (layer_outputs[6 if output_attentions else 5],)
1321
+
1322
+ if output_attentions:
1323
+ all_self_attns += (layer_outputs[5],)
1324
+
1325
+ num_dropped_tokens += (layer_outputs[2],)
1326
+ gate_load += (layer_outputs[3],)
1327
+ gate_importance += (layer_outputs[4],)
1328
+
1329
+ hidden_states = self.norm(hidden_states)
1330
+
1331
+ # add hidden states from the last decoder layer
1332
+ if output_hidden_states:
1333
+ all_hidden_states += (hidden_states,)
1334
+
1335
+ next_cache = next_decoder_cache if use_cache else None
1336
+ if not return_dict:
1337
+ return tuple(
1338
+ v
1339
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1340
+ if v is not None
1341
+ )
1342
+ return BaseMoEModelOutputWithPast(
1343
+ last_hidden_state=hidden_states,
1344
+ balance_loss=balance_loss,
1345
+ past_key_values=next_cache,
1346
+ hidden_states=all_hidden_states,
1347
+ attentions=all_self_attns,
1348
+ num_dropped_tokens=num_dropped_tokens,
1349
+ gate_load=gate_load,
1350
+ gate_importance=gate_importance,
1351
+ )
1352
+
1353
+ def update_config(self):
1354
+ self.config.vocab_size = self.config.vocab_size
1355
+ self.config.max_position_embeddings = self.config.max_position_embeddings
1356
+ # ↓↓↓↓↓↓↓↓↓↓↓↓ changed here ↓↓↓↓↓↓↓↓↓↓↓↓ #
1357
+ self.config.hidden_size = self.layers[0].mlp.input_size
1358
+ self.config.intermediate_size = self.layers[0].mlp.hidden_size
1359
+ self.config.num_hidden_layers = len(self.layers)
1360
+ self.config.num_attention_heads = self.layers[0].self_attn.num_heads
1361
+ self.config.hidden_act = self.layers[0].mlp.hidden_act
1362
+ # ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ #
1363
+ self.config.initializer_range = self.config.initializer_range
1364
+ self.config.rms_norm_eps = self.config.rms_norm_eps
1365
+ self.config.pretraining_tp = self.config.pretraining_tp
1366
+ self.config.use_cache = self.config.use_cache
1367
+ self.config.rope_scaling = self.config.rope_scaling
1368
+ self.config._rope_scaling_validation()
1369
+
1370
+ self.config.num_experts = self.layers[0].mlp.num_experts
1371
+ self.config.num_selects = self.layers[0].mlp.num_selects
1372
+ self.config.size_experts = [
1373
+ self.layers[i].mlp.calculator.experts.size_experts
1374
+ for i in range(self.config.num_hidden_layers)
1375
+ ]
1376
+
1377
+ self.config.gate_type = vars(self.layers[0].mlp).get(
1378
+ "gate_type", "TopKBalancedNoisyGate"
1379
+ )
1380
+ self.config.gate_network = vars(self.layers[0].mlp.gate).get(
1381
+ "gate_network_type", "mlp"
1382
+ )
1383
+ self.config.gate_use_softmax = vars(self.layers[0].mlp.gate).get(
1384
+ "use_softmax", True
1385
+ )
1386
+ self.config.gate_use_balance = vars(self.layers[0].mlp.gate).get(
1387
+ "use_balance", True
1388
+ )
1389
+ self.config.gate_balance_loss_weight = vars(self.layers[0].mlp.gate).get(
1390
+ "balance_loss_weight", 1e-2
1391
+ )
1392
+ self.config.gate_add_noise = vars(self.layers[0].mlp.gate).get(
1393
+ "add_noise", True
1394
+ )
1395
+ self.config.gate_noise_epsilon = vars(self.layers[0].mlp.gate).get(
1396
+ "noise_epsilon", 1e-2
1397
+ )
1398
+
1399
+ self.config.calculator_type = vars(self.layers[0].mlp).get(
1400
+ "calculator_type", "UniversalCalculator"
1401
+ )
1402
+ self.config.multiply_gate_scores = vars(self.layers[0].mlp.calculator).get(
1403
+ "multiply_gate_scores", True
1404
+ )
1405
+ self.config.score_scale_factor = [
1406
+ vars(self.layers[i].mlp.calculator).get("score_scale_factor", 1.0)
1407
+ for i in range(self.config.num_hidden_layers)
1408
+ ]
1409
+ self.config.drop_tokens = vars(self.layers[0].mlp.calculator).get(
1410
+ "drop_tokens", True
1411
+ )
1412
+ self.config.dropped_padding = vars(self.layers[0].mlp.calculator).get(
1413
+ "dropped_padding", "zero"
1414
+ )
1415
+ self.config.capacity_factor = vars(self.layers[0].mlp.calculator).get(
1416
+ "capacity_factor", 1.25
1417
+ )
1418
+
1419
+ def set_moe_num_selects(self, num_selects):
1420
+ for idx, decoder_layer in enumerate(self.layers):
1421
+ decoder_layer.set_moe_num_selects(num_selects)
1422
+
1423
+ def set_moe_gate_use_softmax(self, use_softmax):
1424
+ for idx, decoder_layer in enumerate(self.layers):
1425
+ decoder_layer.set_moe_gate_use_softmax(use_softmax)
1426
+
1427
+ def set_moe_gate_use_balance(self, use_balance):
1428
+ for idx, decoder_layer in enumerate(self.layers):
1429
+ decoder_layer.set_moe_gate_use_balance(use_balance)
1430
+
1431
+ def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
1432
+ for idx, decoder_layer in enumerate(self.layers):
1433
+ decoder_layer.set_moe_gate_balance_loss_weight(balance_loss_weight)
1434
+
1435
+ def set_moe_gate_add_noise(self, add_noise):
1436
+ for idx, decoder_layer in enumerate(self.layers):
1437
+ decoder_layer.set_moe_gate_add_noise(add_noise)
1438
+
1439
+ def set_moe_gate_noise_epsilon(self, noise_epsilon):
1440
+ for idx, decoder_layer in enumerate(self.layers):
1441
+ decoder_layer.set_moe_gate_noise_epsilon(noise_epsilon)
1442
+
1443
+ def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
1444
+ for idx, decoder_layer in enumerate(self.layers):
1445
+ decoder_layer.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)
1446
+
1447
+ def set_moe_calculator_score_scale_factor(
1448
+ self, score_scale_factor, layer_index=None
1449
+ ):
1450
+ if layer_index is None:
1451
+ for idx, decoder_layer in enumerate(self.layers):
1452
+ decoder_layer.set_moe_calculator_score_scale_factor(score_scale_factor)
1453
+ else:
1454
+ self.layers[layer_index].set_moe_calculator_score_scale_factor(
1455
+ score_scale_factor
1456
+ )
1457
+
1458
+ def set_moe_calculator_drop_tokens(self, drop_tokens):
1459
+ for idx, decoder_layer in enumerate(self.layers):
1460
+ decoder_layer.set_moe_calculator_drop_tokens(drop_tokens)
1461
+
1462
+ def set_moe_calculator_dropped_padding(self, dropped_padding):
1463
+ for idx, decoder_layer in enumerate(self.layers):
1464
+ decoder_layer.set_moe_calculator_dropped_padding(dropped_padding)
1465
+
1466
+ def set_moe_calculator_capacity_factor(self, capacity_factor):
1467
+ for idx, decoder_layer in enumerate(self.layers):
1468
+ decoder_layer.set_moe_calculator_capacity_factor(capacity_factor)
1469
+
1470
+ def reset_gate_network(self):
1471
+ for idx, decoder_layer in enumerate(self.layers):
1472
+ decoder_layer.reset_gate_network()
1473
+
1474
+ def reset_experts(self):
1475
+ for idx, decoder_layer in enumerate(self.layers):
1476
+ decoder_layer.reset_experts()
1477
+
1478
+
1479
+ class LlamaMoEForCausalLM(LlamaMoEPreTrainedModel):
1480
+ _tied_weights_keys = ["lm_head.weight"]
1481
+
1482
+ def __init__(self, config):
1483
+ super().__init__(config)
1484
+ self.model = LlamaMoEModel(config)
1485
+ self.pretraining_tp = config.pretraining_tp
1486
+ self.vocab_size = config.vocab_size
1487
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1488
+
1489
+ # Initialize weights and apply final processing
1490
+ self.post_init()
1491
+
1492
+ def get_input_embeddings(self):
1493
+ return self.model.embed_tokens
1494
+
1495
+ def set_input_embeddings(self, value):
1496
+ self.model.embed_tokens = value
1497
+
1498
+ def get_output_embeddings(self):
1499
+ return self.lm_head
1500
+
1501
+ def set_output_embeddings(self, new_embeddings):
1502
+ self.lm_head = new_embeddings
1503
+
1504
+ def set_decoder(self, decoder):
1505
+ self.model = decoder
1506
+
1507
+ def get_decoder(self):
1508
+ return self.model
1509
+
1510
+ def forward(
1511
+ self,
1512
+ input_ids=None,
1513
+ attention_mask=None,
1514
+ position_ids=None,
1515
+ past_key_values=None,
1516
+ inputs_embeds=None,
1517
+ labels=None,
1518
+ use_cache=None,
1519
+ output_attentions=None,
1520
+ output_hidden_states=None,
1521
+ return_dict=None,
1522
+ **kwargs,
1523
+ ):
1524
+ output_attentions = (
1525
+ output_attentions
1526
+ if output_attentions is not None
1527
+ else self.config.output_attentions
1528
+ )
1529
+ output_hidden_states = (
1530
+ output_hidden_states
1531
+ if output_hidden_states is not None
1532
+ else self.config.output_hidden_states
1533
+ )
1534
+ return_dict = (
1535
+ return_dict if return_dict is not None else self.config.use_return_dict
1536
+ )
1537
+
1538
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1539
+ outputs: BaseMoEModelOutputWithPast = self.model(
1540
+ input_ids=input_ids,
1541
+ attention_mask=attention_mask,
1542
+ position_ids=position_ids,
1543
+ past_key_values=past_key_values,
1544
+ inputs_embeds=inputs_embeds,
1545
+ use_cache=use_cache,
1546
+ output_attentions=output_attentions,
1547
+ output_hidden_states=output_hidden_states,
1548
+ return_dict=return_dict,
1549
+ )
1550
+
1551
+ hidden_states = outputs.last_hidden_state
1552
+ logits = self.lm_head(hidden_states)
1553
+
1554
+ loss = None
1555
+ if labels is not None:
1556
+ # Shift so that tokens < n predict n
1557
+ shift_logits = logits[..., :-1, :].contiguous()
1558
+ shift_labels = labels[..., 1:].contiguous()
1559
+ # Flatten the tokens
1560
+ loss_fct = nn.CrossEntropyLoss()
1561
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1562
+ shift_labels = shift_labels.view(-1)
1563
+ # Enable model parallelism
1564
+ shift_labels = shift_labels.to(shift_logits.device)
1565
+ loss = loss_fct(shift_logits, shift_labels)
1566
+ if outputs.balance_loss is not None and outputs.balance_loss > 0:
1567
+ loss += outputs.balance_loss
1568
+
1569
+ if not return_dict:
1570
+ output = (logits,) + outputs[1:]
1571
+ return (loss,) + output if loss is not None else output
1572
+
1573
+ return MoECausalLMOutputWithPast(loss=loss,logits=logits)
1574
+ """
1575
+ return MoECausalLMOutputWithPast(
1576
+ loss=loss,
1577
+ logits=logits,
1578
+ past_key_values=outputs.past_key_values,
1579
+ hidden_states=outputs.hidden_states,
1580
+ attentions=outputs.attentions,
1581
+ num_dropped_tokens=outputs.num_dropped_tokens,
1582
+ balance_loss=outputs.balance_loss,
1583
+ gate_load=outputs.gate_load,
1584
+ gate_importance=outputs.gate_importance,
1585
+ )
1586
+ """
1587
+
1588
+ def prepare_inputs_for_generation(
1589
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1590
+ ):
1591
+ if past_key_values:
1592
+ input_ids = input_ids[:, -1:]
1593
+
1594
+ position_ids = kwargs.get("position_ids", None)
1595
+ if attention_mask is not None and position_ids is None:
1596
+ # create position_ids on the fly for batch generation
1597
+ position_ids = attention_mask.long().cumsum(-1) - 1
1598
+ position_ids.masked_fill_(attention_mask == 0, 1)
1599
+ if past_key_values:
1600
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1601
+
1602
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1603
+ if inputs_embeds is not None and past_key_values is None:
1604
+ model_inputs = {"inputs_embeds": inputs_embeds}
1605
+ else:
1606
+ model_inputs = {"input_ids": input_ids}
1607
+
1608
+ model_inputs.update(
1609
+ {
1610
+ "position_ids": position_ids,
1611
+ "past_key_values": past_key_values,
1612
+ "use_cache": kwargs.get("use_cache"),
1613
+ "attention_mask": attention_mask,
1614
+ }
1615
+ )
1616
+ return model_inputs
1617
+
1618
+ @staticmethod
1619
+ def _reorder_cache(past_key_values, beam_idx):
1620
+ reordered_past = ()
1621
+ for layer_past in past_key_values:
1622
+ reordered_past += (
1623
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1624
+ )
1625
+ return reordered_past
1626
+
1627
+ def update_config(self):
1628
+ self.model.update_config()
1629
+
1630
+ def set_moe_num_selects(self, num_selects):
1631
+ self.model.set_moe_num_selects(num_selects)
1632
+
1633
+ def set_moe_gate_use_softmax(self, use_softmax):
1634
+ self.model.set_moe_gate_use_softmax(use_softmax)
1635
+
1636
+ def set_moe_gate_use_balance(self, use_balance):
1637
+ self.model.set_moe_gate_use_balance(use_balance)
1638
+
1639
+ def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
1640
+ self.model.set_moe_gate_balance_loss_weight(balance_loss_weight)
1641
+
1642
+ def set_moe_gate_add_noise(self, add_noise):
1643
+ self.model.set_moe_gate_add_noise(add_noise)
1644
+
1645
+ def set_moe_gate_noise_epsilon(self, noise_epsilon):
1646
+ self.model.set_moe_gate_noise_epsilon(noise_epsilon)
1647
+
1648
+ def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
1649
+ self.model.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)
1650
+
1651
+ def set_moe_calculator_score_scale_factor(
1652
+ self, score_scale_factor, layer_index=None
1653
+ ):
1654
+ self.model.set_moe_calculator_score_scale_factor(
1655
+ score_scale_factor, layer_index=layer_index
1656
+ )
1657
+
1658
+ def set_moe_calculator_drop_tokens(self, drop_tokens):
1659
+ self.model.set_moe_calculator_drop_tokens(drop_tokens)
1660
+
1661
+ def set_moe_calculator_dropped_padding(self, dropped_padding):
1662
+ self.model.set_moe_calculator_dropped_padding(dropped_padding)
1663
+
1664
+ def set_moe_calculator_capacity_factor(self, capacity_factor):
1665
+ self.model.set_moe_calculator_capacity_factor(capacity_factor)
1666
+
1667
+ def reset_gate_network(self):
1668
+ self.model.reset_gate_network()
1669
+
1670
+ def reset_experts(self):
1671
+ self.model.reset_experts()
1672
+
1673
+ @classmethod
1674
+ def from_pretrained(cls, *model_args, **kwargs):
1675
+ config = kwargs.pop("config", None)
1676
+ model = cls(config)
1677
+ state_dict = kwargs.pop("moe_state_dict", None)
1678
+ if state_dict is not None:
1679
+ model.load_state_dict(state_dict)
1680
+ return model
1681
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72a4694795727b8ab44d14d818c17062cd74bb4bb2e5bffbcecb9d1384e17ca9
3
+ size 1061241998
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 2048,
22
+ "pad_token": null,
23
+ "sp_model_kwargs": {},
24
+ "tokenizer_class": "LlamaTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "use_fast": true
34
+ }
trainer_state.json ADDED
@@ -0,0 +1,3565 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "global_step": 59035,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 4.9915304480392985e-05,
13
+ "loss": 3.6733,
14
+ "step": 100
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 4.983060896078598e-05,
19
+ "loss": 3.625,
20
+ "step": 200
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 4.9745913441178964e-05,
25
+ "loss": 3.5944,
26
+ "step": 300
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 4.966121792157195e-05,
31
+ "loss": 3.5842,
32
+ "step": 400
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 4.9576522401964936e-05,
37
+ "loss": 3.5584,
38
+ "step": 500
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 4.9491826882357925e-05,
43
+ "loss": 3.5428,
44
+ "step": 600
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "learning_rate": 4.9407131362750914e-05,
49
+ "loss": 3.5307,
50
+ "step": 700
51
+ },
52
+ {
53
+ "epoch": 0.01,
54
+ "learning_rate": 4.93224358431439e-05,
55
+ "loss": 3.5306,
56
+ "step": 800
57
+ },
58
+ {
59
+ "epoch": 0.02,
60
+ "learning_rate": 4.9237740323536886e-05,
61
+ "loss": 3.527,
62
+ "step": 900
63
+ },
64
+ {
65
+ "epoch": 0.02,
66
+ "learning_rate": 4.9153044803929875e-05,
67
+ "loss": 3.5105,
68
+ "step": 1000
69
+ },
70
+ {
71
+ "epoch": 0.02,
72
+ "learning_rate": 4.9068349284322865e-05,
73
+ "loss": 3.5141,
74
+ "step": 1100
75
+ },
76
+ {
77
+ "epoch": 0.02,
78
+ "learning_rate": 4.898365376471585e-05,
79
+ "loss": 3.4989,
80
+ "step": 1200
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "learning_rate": 4.889895824510884e-05,
85
+ "loss": 3.4976,
86
+ "step": 1300
87
+ },
88
+ {
89
+ "epoch": 0.02,
90
+ "learning_rate": 4.8814262725501826e-05,
91
+ "loss": 3.5103,
92
+ "step": 1400
93
+ },
94
+ {
95
+ "epoch": 0.03,
96
+ "learning_rate": 4.872956720589481e-05,
97
+ "loss": 3.5097,
98
+ "step": 1500
99
+ },
100
+ {
101
+ "epoch": 0.03,
102
+ "learning_rate": 4.86448716862878e-05,
103
+ "loss": 3.5,
104
+ "step": 1600
105
+ },
106
+ {
107
+ "epoch": 0.03,
108
+ "learning_rate": 4.856017616668079e-05,
109
+ "loss": 3.4815,
110
+ "step": 1700
111
+ },
112
+ {
113
+ "epoch": 0.03,
114
+ "learning_rate": 4.847548064707377e-05,
115
+ "loss": 3.4799,
116
+ "step": 1800
117
+ },
118
+ {
119
+ "epoch": 0.03,
120
+ "learning_rate": 4.839078512746676e-05,
121
+ "loss": 3.4787,
122
+ "step": 1900
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "learning_rate": 4.830608960785974e-05,
127
+ "loss": 3.462,
128
+ "step": 2000
129
+ },
130
+ {
131
+ "epoch": 0.04,
132
+ "learning_rate": 4.822139408825274e-05,
133
+ "loss": 3.467,
134
+ "step": 2100
135
+ },
136
+ {
137
+ "epoch": 0.04,
138
+ "learning_rate": 4.813669856864572e-05,
139
+ "loss": 3.4687,
140
+ "step": 2200
141
+ },
142
+ {
143
+ "epoch": 0.04,
144
+ "learning_rate": 4.805200304903871e-05,
145
+ "loss": 3.4582,
146
+ "step": 2300
147
+ },
148
+ {
149
+ "epoch": 0.04,
150
+ "learning_rate": 4.796730752943169e-05,
151
+ "loss": 3.4537,
152
+ "step": 2400
153
+ },
154
+ {
155
+ "epoch": 0.04,
156
+ "learning_rate": 4.788261200982468e-05,
157
+ "loss": 3.4518,
158
+ "step": 2500
159
+ },
160
+ {
161
+ "epoch": 0.04,
162
+ "learning_rate": 4.779791649021767e-05,
163
+ "loss": 3.4474,
164
+ "step": 2600
165
+ },
166
+ {
167
+ "epoch": 0.05,
168
+ "learning_rate": 4.7713220970610654e-05,
169
+ "loss": 3.4428,
170
+ "step": 2700
171
+ },
172
+ {
173
+ "epoch": 0.05,
174
+ "learning_rate": 4.762852545100364e-05,
175
+ "loss": 3.4255,
176
+ "step": 2800
177
+ },
178
+ {
179
+ "epoch": 0.05,
180
+ "learning_rate": 4.754382993139663e-05,
181
+ "loss": 3.4417,
182
+ "step": 2900
183
+ },
184
+ {
185
+ "epoch": 0.05,
186
+ "learning_rate": 4.745913441178962e-05,
187
+ "loss": 3.4478,
188
+ "step": 3000
189
+ },
190
+ {
191
+ "epoch": 0.05,
192
+ "learning_rate": 4.7374438892182604e-05,
193
+ "loss": 3.4525,
194
+ "step": 3100
195
+ },
196
+ {
197
+ "epoch": 0.05,
198
+ "learning_rate": 4.7289743372575594e-05,
199
+ "loss": 3.4398,
200
+ "step": 3200
201
+ },
202
+ {
203
+ "epoch": 0.06,
204
+ "learning_rate": 4.720504785296858e-05,
205
+ "loss": 3.4446,
206
+ "step": 3300
207
+ },
208
+ {
209
+ "epoch": 0.06,
210
+ "learning_rate": 4.7120352333361565e-05,
211
+ "loss": 3.4213,
212
+ "step": 3400
213
+ },
214
+ {
215
+ "epoch": 0.06,
216
+ "learning_rate": 4.7035656813754555e-05,
217
+ "loss": 3.4228,
218
+ "step": 3500
219
+ },
220
+ {
221
+ "epoch": 0.06,
222
+ "learning_rate": 4.6950961294147544e-05,
223
+ "loss": 3.4218,
224
+ "step": 3600
225
+ },
226
+ {
227
+ "epoch": 0.06,
228
+ "learning_rate": 4.686626577454053e-05,
229
+ "loss": 3.4119,
230
+ "step": 3700
231
+ },
232
+ {
233
+ "epoch": 0.06,
234
+ "learning_rate": 4.6781570254933516e-05,
235
+ "loss": 3.4226,
236
+ "step": 3800
237
+ },
238
+ {
239
+ "epoch": 0.07,
240
+ "learning_rate": 4.66968747353265e-05,
241
+ "loss": 3.4109,
242
+ "step": 3900
243
+ },
244
+ {
245
+ "epoch": 0.07,
246
+ "learning_rate": 4.6612179215719495e-05,
247
+ "loss": 3.4229,
248
+ "step": 4000
249
+ },
250
+ {
251
+ "epoch": 0.07,
252
+ "learning_rate": 4.652748369611248e-05,
253
+ "loss": 3.4124,
254
+ "step": 4100
255
+ },
256
+ {
257
+ "epoch": 0.07,
258
+ "learning_rate": 4.644278817650547e-05,
259
+ "loss": 3.4037,
260
+ "step": 4200
261
+ },
262
+ {
263
+ "epoch": 0.07,
264
+ "learning_rate": 4.635809265689845e-05,
265
+ "loss": 3.418,
266
+ "step": 4300
267
+ },
268
+ {
269
+ "epoch": 0.07,
270
+ "learning_rate": 4.627339713729144e-05,
271
+ "loss": 3.4158,
272
+ "step": 4400
273
+ },
274
+ {
275
+ "epoch": 0.08,
276
+ "learning_rate": 4.618870161768443e-05,
277
+ "loss": 3.4151,
278
+ "step": 4500
279
+ },
280
+ {
281
+ "epoch": 0.08,
282
+ "learning_rate": 4.610400609807741e-05,
283
+ "loss": 3.3993,
284
+ "step": 4600
285
+ },
286
+ {
287
+ "epoch": 0.08,
288
+ "learning_rate": 4.6019310578470407e-05,
289
+ "loss": 3.4016,
290
+ "step": 4700
291
+ },
292
+ {
293
+ "epoch": 0.08,
294
+ "learning_rate": 4.593461505886339e-05,
295
+ "loss": 3.4012,
296
+ "step": 4800
297
+ },
298
+ {
299
+ "epoch": 0.08,
300
+ "learning_rate": 4.584991953925638e-05,
301
+ "loss": 3.4052,
302
+ "step": 4900
303
+ },
304
+ {
305
+ "epoch": 0.08,
306
+ "learning_rate": 4.576522401964936e-05,
307
+ "loss": 3.3892,
308
+ "step": 5000
309
+ },
310
+ {
311
+ "epoch": 0.09,
312
+ "learning_rate": 4.568052850004235e-05,
313
+ "loss": 3.3988,
314
+ "step": 5100
315
+ },
316
+ {
317
+ "epoch": 0.09,
318
+ "learning_rate": 4.559583298043534e-05,
319
+ "loss": 3.3904,
320
+ "step": 5200
321
+ },
322
+ {
323
+ "epoch": 0.09,
324
+ "learning_rate": 4.551113746082832e-05,
325
+ "loss": 3.3914,
326
+ "step": 5300
327
+ },
328
+ {
329
+ "epoch": 0.09,
330
+ "learning_rate": 4.542644194122131e-05,
331
+ "loss": 3.3866,
332
+ "step": 5400
333
+ },
334
+ {
335
+ "epoch": 0.09,
336
+ "learning_rate": 4.53417464216143e-05,
337
+ "loss": 3.4047,
338
+ "step": 5500
339
+ },
340
+ {
341
+ "epoch": 0.09,
342
+ "learning_rate": 4.5257050902007284e-05,
343
+ "loss": 3.3882,
344
+ "step": 5600
345
+ },
346
+ {
347
+ "epoch": 0.1,
348
+ "learning_rate": 4.517235538240027e-05,
349
+ "loss": 3.386,
350
+ "step": 5700
351
+ },
352
+ {
353
+ "epoch": 0.1,
354
+ "learning_rate": 4.5087659862793255e-05,
355
+ "loss": 3.3753,
356
+ "step": 5800
357
+ },
358
+ {
359
+ "epoch": 0.1,
360
+ "learning_rate": 4.500296434318625e-05,
361
+ "loss": 3.3788,
362
+ "step": 5900
363
+ },
364
+ {
365
+ "epoch": 0.1,
366
+ "learning_rate": 4.4918268823579234e-05,
367
+ "loss": 3.3694,
368
+ "step": 6000
369
+ },
370
+ {
371
+ "epoch": 0.1,
372
+ "learning_rate": 4.4833573303972223e-05,
373
+ "loss": 3.3764,
374
+ "step": 6100
375
+ },
376
+ {
377
+ "epoch": 0.11,
378
+ "learning_rate": 4.474887778436521e-05,
379
+ "loss": 3.3728,
380
+ "step": 6200
381
+ },
382
+ {
383
+ "epoch": 0.11,
384
+ "learning_rate": 4.4664182264758195e-05,
385
+ "loss": 3.3889,
386
+ "step": 6300
387
+ },
388
+ {
389
+ "epoch": 0.11,
390
+ "learning_rate": 4.4579486745151185e-05,
391
+ "loss": 3.3798,
392
+ "step": 6400
393
+ },
394
+ {
395
+ "epoch": 0.11,
396
+ "learning_rate": 4.449479122554417e-05,
397
+ "loss": 3.3877,
398
+ "step": 6500
399
+ },
400
+ {
401
+ "epoch": 0.11,
402
+ "learning_rate": 4.4410095705937163e-05,
403
+ "loss": 3.3784,
404
+ "step": 6600
405
+ },
406
+ {
407
+ "epoch": 0.11,
408
+ "learning_rate": 4.4325400186330146e-05,
409
+ "loss": 3.3791,
410
+ "step": 6700
411
+ },
412
+ {
413
+ "epoch": 0.12,
414
+ "learning_rate": 4.424070466672313e-05,
415
+ "loss": 3.3634,
416
+ "step": 6800
417
+ },
418
+ {
419
+ "epoch": 0.12,
420
+ "learning_rate": 4.415600914711612e-05,
421
+ "loss": 3.3735,
422
+ "step": 6900
423
+ },
424
+ {
425
+ "epoch": 0.12,
426
+ "learning_rate": 4.407131362750911e-05,
427
+ "loss": 3.3628,
428
+ "step": 7000
429
+ },
430
+ {
431
+ "epoch": 0.12,
432
+ "learning_rate": 4.3986618107902097e-05,
433
+ "loss": 3.3631,
434
+ "step": 7100
435
+ },
436
+ {
437
+ "epoch": 0.12,
438
+ "learning_rate": 4.390192258829508e-05,
439
+ "loss": 3.3781,
440
+ "step": 7200
441
+ },
442
+ {
443
+ "epoch": 0.12,
444
+ "learning_rate": 4.381722706868807e-05,
445
+ "loss": 3.3661,
446
+ "step": 7300
447
+ },
448
+ {
449
+ "epoch": 0.13,
450
+ "learning_rate": 4.373253154908106e-05,
451
+ "loss": 3.357,
452
+ "step": 7400
453
+ },
454
+ {
455
+ "epoch": 0.13,
456
+ "learning_rate": 4.364783602947404e-05,
457
+ "loss": 3.3617,
458
+ "step": 7500
459
+ },
460
+ {
461
+ "epoch": 0.13,
462
+ "learning_rate": 4.356314050986703e-05,
463
+ "loss": 3.3608,
464
+ "step": 7600
465
+ },
466
+ {
467
+ "epoch": 0.13,
468
+ "learning_rate": 4.347844499026002e-05,
469
+ "loss": 3.3688,
470
+ "step": 7700
471
+ },
472
+ {
473
+ "epoch": 0.13,
474
+ "learning_rate": 4.339374947065301e-05,
475
+ "loss": 3.3568,
476
+ "step": 7800
477
+ },
478
+ {
479
+ "epoch": 0.13,
480
+ "learning_rate": 4.330905395104599e-05,
481
+ "loss": 3.3558,
482
+ "step": 7900
483
+ },
484
+ {
485
+ "epoch": 0.14,
486
+ "learning_rate": 4.322435843143898e-05,
487
+ "loss": 3.3519,
488
+ "step": 8000
489
+ },
490
+ {
491
+ "epoch": 0.14,
492
+ "learning_rate": 4.313966291183197e-05,
493
+ "loss": 3.3446,
494
+ "step": 8100
495
+ },
496
+ {
497
+ "epoch": 0.14,
498
+ "learning_rate": 4.305496739222495e-05,
499
+ "loss": 3.3601,
500
+ "step": 8200
501
+ },
502
+ {
503
+ "epoch": 0.14,
504
+ "learning_rate": 4.297027187261794e-05,
505
+ "loss": 3.3536,
506
+ "step": 8300
507
+ },
508
+ {
509
+ "epoch": 0.14,
510
+ "learning_rate": 4.2885576353010924e-05,
511
+ "loss": 3.3516,
512
+ "step": 8400
513
+ },
514
+ {
515
+ "epoch": 0.14,
516
+ "learning_rate": 4.280088083340392e-05,
517
+ "loss": 3.3506,
518
+ "step": 8500
519
+ },
520
+ {
521
+ "epoch": 0.15,
522
+ "learning_rate": 4.27161853137969e-05,
523
+ "loss": 3.3596,
524
+ "step": 8600
525
+ },
526
+ {
527
+ "epoch": 0.15,
528
+ "learning_rate": 4.2631489794189885e-05,
529
+ "loss": 3.3403,
530
+ "step": 8700
531
+ },
532
+ {
533
+ "epoch": 0.15,
534
+ "learning_rate": 4.2546794274582875e-05,
535
+ "loss": 3.3462,
536
+ "step": 8800
537
+ },
538
+ {
539
+ "epoch": 0.15,
540
+ "learning_rate": 4.2462098754975864e-05,
541
+ "loss": 3.3527,
542
+ "step": 8900
543
+ },
544
+ {
545
+ "epoch": 0.15,
546
+ "learning_rate": 4.237740323536885e-05,
547
+ "loss": 3.3366,
548
+ "step": 9000
549
+ },
550
+ {
551
+ "epoch": 0.15,
552
+ "learning_rate": 4.2292707715761836e-05,
553
+ "loss": 3.3477,
554
+ "step": 9100
555
+ },
556
+ {
557
+ "epoch": 0.16,
558
+ "learning_rate": 4.2208012196154825e-05,
559
+ "loss": 3.3442,
560
+ "step": 9200
561
+ },
562
+ {
563
+ "epoch": 0.16,
564
+ "learning_rate": 4.2123316676547815e-05,
565
+ "loss": 3.3409,
566
+ "step": 9300
567
+ },
568
+ {
569
+ "epoch": 0.16,
570
+ "learning_rate": 4.20386211569408e-05,
571
+ "loss": 3.3388,
572
+ "step": 9400
573
+ },
574
+ {
575
+ "epoch": 0.16,
576
+ "learning_rate": 4.1953925637333787e-05,
577
+ "loss": 3.3477,
578
+ "step": 9500
579
+ },
580
+ {
581
+ "epoch": 0.16,
582
+ "learning_rate": 4.1869230117726776e-05,
583
+ "loss": 3.3408,
584
+ "step": 9600
585
+ },
586
+ {
587
+ "epoch": 0.16,
588
+ "learning_rate": 4.1784534598119765e-05,
589
+ "loss": 3.3139,
590
+ "step": 9700
591
+ },
592
+ {
593
+ "epoch": 0.17,
594
+ "learning_rate": 4.169983907851275e-05,
595
+ "loss": 3.3397,
596
+ "step": 9800
597
+ },
598
+ {
599
+ "epoch": 0.17,
600
+ "learning_rate": 4.161514355890573e-05,
601
+ "loss": 3.3409,
602
+ "step": 9900
603
+ },
604
+ {
605
+ "epoch": 0.17,
606
+ "learning_rate": 4.1530448039298726e-05,
607
+ "loss": 3.3583,
608
+ "step": 10000
609
+ },
610
+ {
611
+ "epoch": 0.17,
612
+ "learning_rate": 4.144575251969171e-05,
613
+ "loss": 3.327,
614
+ "step": 10100
615
+ },
616
+ {
617
+ "epoch": 0.17,
618
+ "learning_rate": 4.13610570000847e-05,
619
+ "loss": 3.3296,
620
+ "step": 10200
621
+ },
622
+ {
623
+ "epoch": 0.17,
624
+ "learning_rate": 4.127636148047768e-05,
625
+ "loss": 3.3406,
626
+ "step": 10300
627
+ },
628
+ {
629
+ "epoch": 0.18,
630
+ "learning_rate": 4.119166596087067e-05,
631
+ "loss": 3.3341,
632
+ "step": 10400
633
+ },
634
+ {
635
+ "epoch": 0.18,
636
+ "learning_rate": 4.110697044126366e-05,
637
+ "loss": 3.3396,
638
+ "step": 10500
639
+ },
640
+ {
641
+ "epoch": 0.18,
642
+ "learning_rate": 4.102227492165664e-05,
643
+ "loss": 3.333,
644
+ "step": 10600
645
+ },
646
+ {
647
+ "epoch": 0.18,
648
+ "learning_rate": 4.093757940204964e-05,
649
+ "loss": 3.3402,
650
+ "step": 10700
651
+ },
652
+ {
653
+ "epoch": 0.18,
654
+ "learning_rate": 4.085288388244262e-05,
655
+ "loss": 3.3197,
656
+ "step": 10800
657
+ },
658
+ {
659
+ "epoch": 0.18,
660
+ "learning_rate": 4.076818836283561e-05,
661
+ "loss": 3.3265,
662
+ "step": 10900
663
+ },
664
+ {
665
+ "epoch": 0.19,
666
+ "learning_rate": 4.068349284322859e-05,
667
+ "loss": 3.322,
668
+ "step": 11000
669
+ },
670
+ {
671
+ "epoch": 0.19,
672
+ "learning_rate": 4.059879732362158e-05,
673
+ "loss": 3.3263,
674
+ "step": 11100
675
+ },
676
+ {
677
+ "epoch": 0.19,
678
+ "learning_rate": 4.051410180401457e-05,
679
+ "loss": 3.3376,
680
+ "step": 11200
681
+ },
682
+ {
683
+ "epoch": 0.19,
684
+ "learning_rate": 4.0429406284407554e-05,
685
+ "loss": 3.3221,
686
+ "step": 11300
687
+ },
688
+ {
689
+ "epoch": 0.19,
690
+ "learning_rate": 4.034471076480054e-05,
691
+ "loss": 3.3336,
692
+ "step": 11400
693
+ },
694
+ {
695
+ "epoch": 0.19,
696
+ "learning_rate": 4.026001524519353e-05,
697
+ "loss": 3.3214,
698
+ "step": 11500
699
+ },
700
+ {
701
+ "epoch": 0.2,
702
+ "learning_rate": 4.017531972558652e-05,
703
+ "loss": 3.3162,
704
+ "step": 11600
705
+ },
706
+ {
707
+ "epoch": 0.2,
708
+ "learning_rate": 4.0090624205979505e-05,
709
+ "loss": 3.3146,
710
+ "step": 11700
711
+ },
712
+ {
713
+ "epoch": 0.2,
714
+ "learning_rate": 4.000592868637249e-05,
715
+ "loss": 3.313,
716
+ "step": 11800
717
+ },
718
+ {
719
+ "epoch": 0.2,
720
+ "learning_rate": 3.992123316676548e-05,
721
+ "loss": 3.3124,
722
+ "step": 11900
723
+ },
724
+ {
725
+ "epoch": 0.2,
726
+ "learning_rate": 3.9836537647158466e-05,
727
+ "loss": 3.3081,
728
+ "step": 12000
729
+ },
730
+ {
731
+ "epoch": 0.2,
732
+ "learning_rate": 3.9751842127551455e-05,
733
+ "loss": 3.3001,
734
+ "step": 12100
735
+ },
736
+ {
737
+ "epoch": 0.21,
738
+ "learning_rate": 3.9667146607944445e-05,
739
+ "loss": 3.3163,
740
+ "step": 12200
741
+ },
742
+ {
743
+ "epoch": 0.21,
744
+ "learning_rate": 3.958245108833743e-05,
745
+ "loss": 3.3065,
746
+ "step": 12300
747
+ },
748
+ {
749
+ "epoch": 0.21,
750
+ "learning_rate": 3.9497755568730416e-05,
751
+ "loss": 3.3106,
752
+ "step": 12400
753
+ },
754
+ {
755
+ "epoch": 0.21,
756
+ "learning_rate": 3.94130600491234e-05,
757
+ "loss": 3.3182,
758
+ "step": 12500
759
+ },
760
+ {
761
+ "epoch": 0.21,
762
+ "learning_rate": 3.9328364529516395e-05,
763
+ "loss": 3.3078,
764
+ "step": 12600
765
+ },
766
+ {
767
+ "epoch": 0.22,
768
+ "learning_rate": 3.924366900990938e-05,
769
+ "loss": 3.3173,
770
+ "step": 12700
771
+ },
772
+ {
773
+ "epoch": 0.22,
774
+ "learning_rate": 3.915897349030237e-05,
775
+ "loss": 3.3037,
776
+ "step": 12800
777
+ },
778
+ {
779
+ "epoch": 0.22,
780
+ "learning_rate": 3.907427797069535e-05,
781
+ "loss": 3.3128,
782
+ "step": 12900
783
+ },
784
+ {
785
+ "epoch": 0.22,
786
+ "learning_rate": 3.898958245108834e-05,
787
+ "loss": 3.3012,
788
+ "step": 13000
789
+ },
790
+ {
791
+ "epoch": 0.22,
792
+ "learning_rate": 3.890488693148133e-05,
793
+ "loss": 3.3003,
794
+ "step": 13100
795
+ },
796
+ {
797
+ "epoch": 0.22,
798
+ "learning_rate": 3.882019141187431e-05,
799
+ "loss": 3.3,
800
+ "step": 13200
801
+ },
802
+ {
803
+ "epoch": 0.23,
804
+ "learning_rate": 3.87354958922673e-05,
805
+ "loss": 3.3083,
806
+ "step": 13300
807
+ },
808
+ {
809
+ "epoch": 0.23,
810
+ "learning_rate": 3.865080037266029e-05,
811
+ "loss": 3.3119,
812
+ "step": 13400
813
+ },
814
+ {
815
+ "epoch": 0.23,
816
+ "learning_rate": 3.856610485305327e-05,
817
+ "loss": 3.3086,
818
+ "step": 13500
819
+ },
820
+ {
821
+ "epoch": 0.23,
822
+ "learning_rate": 3.848140933344626e-05,
823
+ "loss": 3.315,
824
+ "step": 13600
825
+ },
826
+ {
827
+ "epoch": 0.23,
828
+ "learning_rate": 3.839671381383925e-05,
829
+ "loss": 3.3085,
830
+ "step": 13700
831
+ },
832
+ {
833
+ "epoch": 0.23,
834
+ "learning_rate": 3.831201829423224e-05,
835
+ "loss": 3.302,
836
+ "step": 13800
837
+ },
838
+ {
839
+ "epoch": 0.24,
840
+ "learning_rate": 3.822732277462522e-05,
841
+ "loss": 3.3055,
842
+ "step": 13900
843
+ },
844
+ {
845
+ "epoch": 0.24,
846
+ "learning_rate": 3.814262725501821e-05,
847
+ "loss": 3.2976,
848
+ "step": 14000
849
+ },
850
+ {
851
+ "epoch": 0.24,
852
+ "learning_rate": 3.80579317354112e-05,
853
+ "loss": 3.3026,
854
+ "step": 14100
855
+ },
856
+ {
857
+ "epoch": 0.24,
858
+ "learning_rate": 3.7973236215804184e-05,
859
+ "loss": 3.2877,
860
+ "step": 14200
861
+ },
862
+ {
863
+ "epoch": 0.24,
864
+ "learning_rate": 3.788854069619717e-05,
865
+ "loss": 3.2788,
866
+ "step": 14300
867
+ },
868
+ {
869
+ "epoch": 0.24,
870
+ "learning_rate": 3.7803845176590156e-05,
871
+ "loss": 3.302,
872
+ "step": 14400
873
+ },
874
+ {
875
+ "epoch": 0.25,
876
+ "learning_rate": 3.771914965698315e-05,
877
+ "loss": 3.2954,
878
+ "step": 14500
879
+ },
880
+ {
881
+ "epoch": 0.25,
882
+ "learning_rate": 3.7634454137376135e-05,
883
+ "loss": 3.2901,
884
+ "step": 14600
885
+ },
886
+ {
887
+ "epoch": 0.25,
888
+ "learning_rate": 3.7549758617769124e-05,
889
+ "loss": 3.2979,
890
+ "step": 14700
891
+ },
892
+ {
893
+ "epoch": 0.25,
894
+ "learning_rate": 3.7465063098162106e-05,
895
+ "loss": 3.2923,
896
+ "step": 14800
897
+ },
898
+ {
899
+ "epoch": 0.25,
900
+ "learning_rate": 3.7380367578555096e-05,
901
+ "loss": 3.2981,
902
+ "step": 14900
903
+ },
904
+ {
905
+ "epoch": 0.25,
906
+ "learning_rate": 3.7295672058948085e-05,
907
+ "loss": 3.2964,
908
+ "step": 15000
909
+ },
910
+ {
911
+ "epoch": 0.26,
912
+ "learning_rate": 3.721097653934107e-05,
913
+ "loss": 3.2995,
914
+ "step": 15100
915
+ },
916
+ {
917
+ "epoch": 0.26,
918
+ "learning_rate": 3.7126281019734064e-05,
919
+ "loss": 3.2988,
920
+ "step": 15200
921
+ },
922
+ {
923
+ "epoch": 0.26,
924
+ "learning_rate": 3.7041585500127046e-05,
925
+ "loss": 3.2948,
926
+ "step": 15300
927
+ },
928
+ {
929
+ "epoch": 0.26,
930
+ "learning_rate": 3.695688998052003e-05,
931
+ "loss": 3.288,
932
+ "step": 15400
933
+ },
934
+ {
935
+ "epoch": 0.26,
936
+ "learning_rate": 3.687219446091302e-05,
937
+ "loss": 3.2881,
938
+ "step": 15500
939
+ },
940
+ {
941
+ "epoch": 0.26,
942
+ "learning_rate": 3.678749894130601e-05,
943
+ "loss": 3.2768,
944
+ "step": 15600
945
+ },
946
+ {
947
+ "epoch": 0.27,
948
+ "learning_rate": 3.6702803421699e-05,
949
+ "loss": 3.2781,
950
+ "step": 15700
951
+ },
952
+ {
953
+ "epoch": 0.27,
954
+ "learning_rate": 3.661810790209198e-05,
955
+ "loss": 3.2889,
956
+ "step": 15800
957
+ },
958
+ {
959
+ "epoch": 0.27,
960
+ "learning_rate": 3.653341238248497e-05,
961
+ "loss": 3.2875,
962
+ "step": 15900
963
+ },
964
+ {
965
+ "epoch": 0.27,
966
+ "learning_rate": 3.644871686287796e-05,
967
+ "loss": 3.2949,
968
+ "step": 16000
969
+ },
970
+ {
971
+ "epoch": 0.27,
972
+ "learning_rate": 3.636402134327094e-05,
973
+ "loss": 3.281,
974
+ "step": 16100
975
+ },
976
+ {
977
+ "epoch": 0.27,
978
+ "learning_rate": 3.627932582366393e-05,
979
+ "loss": 3.2902,
980
+ "step": 16200
981
+ },
982
+ {
983
+ "epoch": 0.28,
984
+ "learning_rate": 3.619463030405691e-05,
985
+ "loss": 3.2926,
986
+ "step": 16300
987
+ },
988
+ {
989
+ "epoch": 0.28,
990
+ "learning_rate": 3.610993478444991e-05,
991
+ "loss": 3.2912,
992
+ "step": 16400
993
+ },
994
+ {
995
+ "epoch": 0.28,
996
+ "learning_rate": 3.602523926484289e-05,
997
+ "loss": 3.2835,
998
+ "step": 16500
999
+ },
1000
+ {
1001
+ "epoch": 0.28,
1002
+ "learning_rate": 3.594054374523588e-05,
1003
+ "loss": 3.2712,
1004
+ "step": 16600
1005
+ },
1006
+ {
1007
+ "epoch": 0.28,
1008
+ "learning_rate": 3.585584822562887e-05,
1009
+ "loss": 3.2824,
1010
+ "step": 16700
1011
+ },
1012
+ {
1013
+ "epoch": 0.28,
1014
+ "learning_rate": 3.577115270602185e-05,
1015
+ "loss": 3.2741,
1016
+ "step": 16800
1017
+ },
1018
+ {
1019
+ "epoch": 0.29,
1020
+ "learning_rate": 3.568645718641484e-05,
1021
+ "loss": 3.2763,
1022
+ "step": 16900
1023
+ },
1024
+ {
1025
+ "epoch": 0.29,
1026
+ "learning_rate": 3.5601761666807825e-05,
1027
+ "loss": 3.2611,
1028
+ "step": 17000
1029
+ },
1030
+ {
1031
+ "epoch": 0.29,
1032
+ "learning_rate": 3.5517066147200814e-05,
1033
+ "loss": 3.2923,
1034
+ "step": 17100
1035
+ },
1036
+ {
1037
+ "epoch": 0.29,
1038
+ "learning_rate": 3.54323706275938e-05,
1039
+ "loss": 3.2667,
1040
+ "step": 17200
1041
+ },
1042
+ {
1043
+ "epoch": 0.29,
1044
+ "learning_rate": 3.5347675107986786e-05,
1045
+ "loss": 3.2792,
1046
+ "step": 17300
1047
+ },
1048
+ {
1049
+ "epoch": 0.29,
1050
+ "learning_rate": 3.5262979588379775e-05,
1051
+ "loss": 3.2777,
1052
+ "step": 17400
1053
+ },
1054
+ {
1055
+ "epoch": 0.3,
1056
+ "learning_rate": 3.5178284068772764e-05,
1057
+ "loss": 3.275,
1058
+ "step": 17500
1059
+ },
1060
+ {
1061
+ "epoch": 0.3,
1062
+ "learning_rate": 3.5093588549165754e-05,
1063
+ "loss": 3.286,
1064
+ "step": 17600
1065
+ },
1066
+ {
1067
+ "epoch": 0.3,
1068
+ "learning_rate": 3.5008893029558736e-05,
1069
+ "loss": 3.2784,
1070
+ "step": 17700
1071
+ },
1072
+ {
1073
+ "epoch": 0.3,
1074
+ "learning_rate": 3.4924197509951726e-05,
1075
+ "loss": 3.2707,
1076
+ "step": 17800
1077
+ },
1078
+ {
1079
+ "epoch": 0.3,
1080
+ "learning_rate": 3.4839501990344715e-05,
1081
+ "loss": 3.2591,
1082
+ "step": 17900
1083
+ },
1084
+ {
1085
+ "epoch": 0.3,
1086
+ "learning_rate": 3.47548064707377e-05,
1087
+ "loss": 3.268,
1088
+ "step": 18000
1089
+ },
1090
+ {
1091
+ "epoch": 0.31,
1092
+ "learning_rate": 3.467011095113069e-05,
1093
+ "loss": 3.2802,
1094
+ "step": 18100
1095
+ },
1096
+ {
1097
+ "epoch": 0.31,
1098
+ "learning_rate": 3.4585415431523676e-05,
1099
+ "loss": 3.2788,
1100
+ "step": 18200
1101
+ },
1102
+ {
1103
+ "epoch": 0.31,
1104
+ "learning_rate": 3.4500719911916666e-05,
1105
+ "loss": 3.2516,
1106
+ "step": 18300
1107
+ },
1108
+ {
1109
+ "epoch": 0.31,
1110
+ "learning_rate": 3.441602439230965e-05,
1111
+ "loss": 3.2708,
1112
+ "step": 18400
1113
+ },
1114
+ {
1115
+ "epoch": 0.31,
1116
+ "learning_rate": 3.433132887270263e-05,
1117
+ "loss": 3.269,
1118
+ "step": 18500
1119
+ },
1120
+ {
1121
+ "epoch": 0.32,
1122
+ "learning_rate": 3.424663335309563e-05,
1123
+ "loss": 3.2583,
1124
+ "step": 18600
1125
+ },
1126
+ {
1127
+ "epoch": 0.32,
1128
+ "learning_rate": 3.416193783348861e-05,
1129
+ "loss": 3.2607,
1130
+ "step": 18700
1131
+ },
1132
+ {
1133
+ "epoch": 0.32,
1134
+ "learning_rate": 3.40772423138816e-05,
1135
+ "loss": 3.2738,
1136
+ "step": 18800
1137
+ },
1138
+ {
1139
+ "epoch": 0.32,
1140
+ "learning_rate": 3.399254679427458e-05,
1141
+ "loss": 3.2747,
1142
+ "step": 18900
1143
+ },
1144
+ {
1145
+ "epoch": 0.32,
1146
+ "learning_rate": 3.390785127466757e-05,
1147
+ "loss": 3.2722,
1148
+ "step": 19000
1149
+ },
1150
+ {
1151
+ "epoch": 0.32,
1152
+ "learning_rate": 3.382315575506056e-05,
1153
+ "loss": 3.28,
1154
+ "step": 19100
1155
+ },
1156
+ {
1157
+ "epoch": 0.33,
1158
+ "learning_rate": 3.373846023545354e-05,
1159
+ "loss": 3.2739,
1160
+ "step": 19200
1161
+ },
1162
+ {
1163
+ "epoch": 0.33,
1164
+ "learning_rate": 3.365376471584653e-05,
1165
+ "loss": 3.2595,
1166
+ "step": 19300
1167
+ },
1168
+ {
1169
+ "epoch": 0.33,
1170
+ "learning_rate": 3.356906919623952e-05,
1171
+ "loss": 3.2672,
1172
+ "step": 19400
1173
+ },
1174
+ {
1175
+ "epoch": 0.33,
1176
+ "learning_rate": 3.348437367663251e-05,
1177
+ "loss": 3.2611,
1178
+ "step": 19500
1179
+ },
1180
+ {
1181
+ "epoch": 0.33,
1182
+ "learning_rate": 3.339967815702549e-05,
1183
+ "loss": 3.2656,
1184
+ "step": 19600
1185
+ },
1186
+ {
1187
+ "epoch": 0.33,
1188
+ "learning_rate": 3.331498263741848e-05,
1189
+ "loss": 3.2765,
1190
+ "step": 19700
1191
+ },
1192
+ {
1193
+ "epoch": 0.34,
1194
+ "learning_rate": 3.323028711781147e-05,
1195
+ "loss": 3.2694,
1196
+ "step": 19800
1197
+ },
1198
+ {
1199
+ "epoch": 0.34,
1200
+ "learning_rate": 3.3145591598204454e-05,
1201
+ "loss": 3.2673,
1202
+ "step": 19900
1203
+ },
1204
+ {
1205
+ "epoch": 0.34,
1206
+ "learning_rate": 3.3060896078597444e-05,
1207
+ "loss": 3.2698,
1208
+ "step": 20000
1209
+ },
1210
+ {
1211
+ "epoch": 0.34,
1212
+ "learning_rate": 3.297620055899043e-05,
1213
+ "loss": 3.2659,
1214
+ "step": 20100
1215
+ },
1216
+ {
1217
+ "epoch": 0.34,
1218
+ "learning_rate": 3.2891505039383416e-05,
1219
+ "loss": 3.2683,
1220
+ "step": 20200
1221
+ },
1222
+ {
1223
+ "epoch": 0.34,
1224
+ "learning_rate": 3.2806809519776405e-05,
1225
+ "loss": 3.2527,
1226
+ "step": 20300
1227
+ },
1228
+ {
1229
+ "epoch": 0.35,
1230
+ "learning_rate": 3.272211400016939e-05,
1231
+ "loss": 3.2603,
1232
+ "step": 20400
1233
+ },
1234
+ {
1235
+ "epoch": 0.35,
1236
+ "learning_rate": 3.2637418480562384e-05,
1237
+ "loss": 3.2634,
1238
+ "step": 20500
1239
+ },
1240
+ {
1241
+ "epoch": 0.35,
1242
+ "learning_rate": 3.2552722960955366e-05,
1243
+ "loss": 3.2569,
1244
+ "step": 20600
1245
+ },
1246
+ {
1247
+ "epoch": 0.35,
1248
+ "learning_rate": 3.2468027441348356e-05,
1249
+ "loss": 3.2552,
1250
+ "step": 20700
1251
+ },
1252
+ {
1253
+ "epoch": 0.35,
1254
+ "learning_rate": 3.238333192174134e-05,
1255
+ "loss": 3.2618,
1256
+ "step": 20800
1257
+ },
1258
+ {
1259
+ "epoch": 0.35,
1260
+ "learning_rate": 3.229863640213433e-05,
1261
+ "loss": 3.2546,
1262
+ "step": 20900
1263
+ },
1264
+ {
1265
+ "epoch": 0.36,
1266
+ "learning_rate": 3.221394088252732e-05,
1267
+ "loss": 3.2551,
1268
+ "step": 21000
1269
+ },
1270
+ {
1271
+ "epoch": 0.36,
1272
+ "learning_rate": 3.21292453629203e-05,
1273
+ "loss": 3.2576,
1274
+ "step": 21100
1275
+ },
1276
+ {
1277
+ "epoch": 0.36,
1278
+ "learning_rate": 3.2044549843313296e-05,
1279
+ "loss": 3.2724,
1280
+ "step": 21200
1281
+ },
1282
+ {
1283
+ "epoch": 0.36,
1284
+ "learning_rate": 3.195985432370628e-05,
1285
+ "loss": 3.2538,
1286
+ "step": 21300
1287
+ },
1288
+ {
1289
+ "epoch": 0.36,
1290
+ "learning_rate": 3.187515880409927e-05,
1291
+ "loss": 3.2595,
1292
+ "step": 21400
1293
+ },
1294
+ {
1295
+ "epoch": 0.36,
1296
+ "learning_rate": 3.179046328449225e-05,
1297
+ "loss": 3.2421,
1298
+ "step": 21500
1299
+ },
1300
+ {
1301
+ "epoch": 0.37,
1302
+ "learning_rate": 3.170576776488524e-05,
1303
+ "loss": 3.2536,
1304
+ "step": 21600
1305
+ },
1306
+ {
1307
+ "epoch": 0.37,
1308
+ "learning_rate": 3.162107224527823e-05,
1309
+ "loss": 3.2726,
1310
+ "step": 21700
1311
+ },
1312
+ {
1313
+ "epoch": 0.37,
1314
+ "learning_rate": 3.153637672567121e-05,
1315
+ "loss": 3.2631,
1316
+ "step": 21800
1317
+ },
1318
+ {
1319
+ "epoch": 0.37,
1320
+ "learning_rate": 3.14516812060642e-05,
1321
+ "loss": 3.2627,
1322
+ "step": 21900
1323
+ },
1324
+ {
1325
+ "epoch": 0.37,
1326
+ "learning_rate": 3.136698568645719e-05,
1327
+ "loss": 3.2431,
1328
+ "step": 22000
1329
+ },
1330
+ {
1331
+ "epoch": 0.37,
1332
+ "learning_rate": 3.128229016685017e-05,
1333
+ "loss": 3.2649,
1334
+ "step": 22100
1335
+ },
1336
+ {
1337
+ "epoch": 0.38,
1338
+ "learning_rate": 3.119759464724316e-05,
1339
+ "loss": 3.2347,
1340
+ "step": 22200
1341
+ },
1342
+ {
1343
+ "epoch": 0.38,
1344
+ "learning_rate": 3.1112899127636144e-05,
1345
+ "loss": 3.2413,
1346
+ "step": 22300
1347
+ },
1348
+ {
1349
+ "epoch": 0.38,
1350
+ "learning_rate": 3.102820360802914e-05,
1351
+ "loss": 3.2626,
1352
+ "step": 22400
1353
+ },
1354
+ {
1355
+ "epoch": 0.38,
1356
+ "learning_rate": 3.094350808842212e-05,
1357
+ "loss": 3.2423,
1358
+ "step": 22500
1359
+ },
1360
+ {
1361
+ "epoch": 0.38,
1362
+ "learning_rate": 3.085881256881511e-05,
1363
+ "loss": 3.2457,
1364
+ "step": 22600
1365
+ },
1366
+ {
1367
+ "epoch": 0.38,
1368
+ "learning_rate": 3.07741170492081e-05,
1369
+ "loss": 3.239,
1370
+ "step": 22700
1371
+ },
1372
+ {
1373
+ "epoch": 0.39,
1374
+ "learning_rate": 3.0689421529601084e-05,
1375
+ "loss": 3.2517,
1376
+ "step": 22800
1377
+ },
1378
+ {
1379
+ "epoch": 0.39,
1380
+ "learning_rate": 3.0604726009994074e-05,
1381
+ "loss": 3.251,
1382
+ "step": 22900
1383
+ },
1384
+ {
1385
+ "epoch": 0.39,
1386
+ "learning_rate": 3.0520030490387056e-05,
1387
+ "loss": 3.2454,
1388
+ "step": 23000
1389
+ },
1390
+ {
1391
+ "epoch": 0.39,
1392
+ "learning_rate": 3.043533497078005e-05,
1393
+ "loss": 3.2455,
1394
+ "step": 23100
1395
+ },
1396
+ {
1397
+ "epoch": 0.39,
1398
+ "learning_rate": 3.0350639451173035e-05,
1399
+ "loss": 3.2572,
1400
+ "step": 23200
1401
+ },
1402
+ {
1403
+ "epoch": 0.39,
1404
+ "learning_rate": 3.026594393156602e-05,
1405
+ "loss": 3.2525,
1406
+ "step": 23300
1407
+ },
1408
+ {
1409
+ "epoch": 0.4,
1410
+ "learning_rate": 3.0181248411959007e-05,
1411
+ "loss": 3.2423,
1412
+ "step": 23400
1413
+ },
1414
+ {
1415
+ "epoch": 0.4,
1416
+ "learning_rate": 3.0096552892352e-05,
1417
+ "loss": 3.2602,
1418
+ "step": 23500
1419
+ },
1420
+ {
1421
+ "epoch": 0.4,
1422
+ "learning_rate": 3.0011857372744982e-05,
1423
+ "loss": 3.2442,
1424
+ "step": 23600
1425
+ },
1426
+ {
1427
+ "epoch": 0.4,
1428
+ "learning_rate": 2.9927161853137968e-05,
1429
+ "loss": 3.242,
1430
+ "step": 23700
1431
+ },
1432
+ {
1433
+ "epoch": 0.4,
1434
+ "learning_rate": 2.9842466333530954e-05,
1435
+ "loss": 3.2454,
1436
+ "step": 23800
1437
+ },
1438
+ {
1439
+ "epoch": 0.4,
1440
+ "learning_rate": 2.9757770813923947e-05,
1441
+ "loss": 3.2343,
1442
+ "step": 23900
1443
+ },
1444
+ {
1445
+ "epoch": 0.41,
1446
+ "learning_rate": 2.9673075294316933e-05,
1447
+ "loss": 3.2436,
1448
+ "step": 24000
1449
+ },
1450
+ {
1451
+ "epoch": 0.41,
1452
+ "learning_rate": 2.958837977470992e-05,
1453
+ "loss": 3.237,
1454
+ "step": 24100
1455
+ },
1456
+ {
1457
+ "epoch": 0.41,
1458
+ "learning_rate": 2.9503684255102908e-05,
1459
+ "loss": 3.2552,
1460
+ "step": 24200
1461
+ },
1462
+ {
1463
+ "epoch": 0.41,
1464
+ "learning_rate": 2.9418988735495894e-05,
1465
+ "loss": 3.2511,
1466
+ "step": 24300
1467
+ },
1468
+ {
1469
+ "epoch": 0.41,
1470
+ "learning_rate": 2.933429321588888e-05,
1471
+ "loss": 3.2352,
1472
+ "step": 24400
1473
+ },
1474
+ {
1475
+ "epoch": 0.42,
1476
+ "learning_rate": 2.9249597696281866e-05,
1477
+ "loss": 3.2356,
1478
+ "step": 24500
1479
+ },
1480
+ {
1481
+ "epoch": 0.42,
1482
+ "learning_rate": 2.916490217667486e-05,
1483
+ "loss": 3.2547,
1484
+ "step": 24600
1485
+ },
1486
+ {
1487
+ "epoch": 0.42,
1488
+ "learning_rate": 2.9080206657067845e-05,
1489
+ "loss": 3.2578,
1490
+ "step": 24700
1491
+ },
1492
+ {
1493
+ "epoch": 0.42,
1494
+ "learning_rate": 2.899551113746083e-05,
1495
+ "loss": 3.2299,
1496
+ "step": 24800
1497
+ },
1498
+ {
1499
+ "epoch": 0.42,
1500
+ "learning_rate": 2.8910815617853816e-05,
1501
+ "loss": 3.2308,
1502
+ "step": 24900
1503
+ },
1504
+ {
1505
+ "epoch": 0.42,
1506
+ "learning_rate": 2.8826120098246806e-05,
1507
+ "loss": 3.231,
1508
+ "step": 25000
1509
+ },
1510
+ {
1511
+ "epoch": 0.43,
1512
+ "learning_rate": 2.8741424578639792e-05,
1513
+ "loss": 3.244,
1514
+ "step": 25100
1515
+ },
1516
+ {
1517
+ "epoch": 0.43,
1518
+ "learning_rate": 2.8656729059032778e-05,
1519
+ "loss": 3.2523,
1520
+ "step": 25200
1521
+ },
1522
+ {
1523
+ "epoch": 0.43,
1524
+ "learning_rate": 2.8572033539425764e-05,
1525
+ "loss": 3.2394,
1526
+ "step": 25300
1527
+ },
1528
+ {
1529
+ "epoch": 0.43,
1530
+ "learning_rate": 2.8487338019818753e-05,
1531
+ "loss": 3.2434,
1532
+ "step": 25400
1533
+ },
1534
+ {
1535
+ "epoch": 0.43,
1536
+ "learning_rate": 2.840264250021174e-05,
1537
+ "loss": 3.2412,
1538
+ "step": 25500
1539
+ },
1540
+ {
1541
+ "epoch": 0.43,
1542
+ "learning_rate": 2.8317946980604725e-05,
1543
+ "loss": 3.2396,
1544
+ "step": 25600
1545
+ },
1546
+ {
1547
+ "epoch": 0.44,
1548
+ "learning_rate": 2.8233251460997718e-05,
1549
+ "loss": 3.2516,
1550
+ "step": 25700
1551
+ },
1552
+ {
1553
+ "epoch": 0.44,
1554
+ "learning_rate": 2.8148555941390704e-05,
1555
+ "loss": 3.221,
1556
+ "step": 25800
1557
+ },
1558
+ {
1559
+ "epoch": 0.44,
1560
+ "learning_rate": 2.806386042178369e-05,
1561
+ "loss": 3.2295,
1562
+ "step": 25900
1563
+ },
1564
+ {
1565
+ "epoch": 0.44,
1566
+ "learning_rate": 2.7979164902176675e-05,
1567
+ "loss": 3.236,
1568
+ "step": 26000
1569
+ },
1570
+ {
1571
+ "epoch": 0.44,
1572
+ "learning_rate": 2.7894469382569665e-05,
1573
+ "loss": 3.2444,
1574
+ "step": 26100
1575
+ },
1576
+ {
1577
+ "epoch": 0.44,
1578
+ "learning_rate": 2.780977386296265e-05,
1579
+ "loss": 3.2383,
1580
+ "step": 26200
1581
+ },
1582
+ {
1583
+ "epoch": 0.45,
1584
+ "learning_rate": 2.7725078343355637e-05,
1585
+ "loss": 3.2314,
1586
+ "step": 26300
1587
+ },
1588
+ {
1589
+ "epoch": 0.45,
1590
+ "learning_rate": 2.7640382823748623e-05,
1591
+ "loss": 3.2459,
1592
+ "step": 26400
1593
+ },
1594
+ {
1595
+ "epoch": 0.45,
1596
+ "learning_rate": 2.7555687304141615e-05,
1597
+ "loss": 3.2391,
1598
+ "step": 26500
1599
+ },
1600
+ {
1601
+ "epoch": 0.45,
1602
+ "learning_rate": 2.74709917845346e-05,
1603
+ "loss": 3.2394,
1604
+ "step": 26600
1605
+ },
1606
+ {
1607
+ "epoch": 0.45,
1608
+ "learning_rate": 2.7386296264927584e-05,
1609
+ "loss": 3.2304,
1610
+ "step": 26700
1611
+ },
1612
+ {
1613
+ "epoch": 0.45,
1614
+ "learning_rate": 2.730160074532057e-05,
1615
+ "loss": 3.2376,
1616
+ "step": 26800
1617
+ },
1618
+ {
1619
+ "epoch": 0.46,
1620
+ "learning_rate": 2.7216905225713563e-05,
1621
+ "loss": 3.2229,
1622
+ "step": 26900
1623
+ },
1624
+ {
1625
+ "epoch": 0.46,
1626
+ "learning_rate": 2.713220970610655e-05,
1627
+ "loss": 3.2386,
1628
+ "step": 27000
1629
+ },
1630
+ {
1631
+ "epoch": 0.46,
1632
+ "learning_rate": 2.7047514186499535e-05,
1633
+ "loss": 3.2269,
1634
+ "step": 27100
1635
+ },
1636
+ {
1637
+ "epoch": 0.46,
1638
+ "learning_rate": 2.6962818666892524e-05,
1639
+ "loss": 3.2357,
1640
+ "step": 27200
1641
+ },
1642
+ {
1643
+ "epoch": 0.46,
1644
+ "learning_rate": 2.687812314728551e-05,
1645
+ "loss": 3.2211,
1646
+ "step": 27300
1647
+ },
1648
+ {
1649
+ "epoch": 0.46,
1650
+ "learning_rate": 2.6793427627678496e-05,
1651
+ "loss": 3.2306,
1652
+ "step": 27400
1653
+ },
1654
+ {
1655
+ "epoch": 0.47,
1656
+ "learning_rate": 2.6708732108071482e-05,
1657
+ "loss": 3.246,
1658
+ "step": 27500
1659
+ },
1660
+ {
1661
+ "epoch": 0.47,
1662
+ "learning_rate": 2.6624036588464474e-05,
1663
+ "loss": 3.2277,
1664
+ "step": 27600
1665
+ },
1666
+ {
1667
+ "epoch": 0.47,
1668
+ "learning_rate": 2.653934106885746e-05,
1669
+ "loss": 3.2324,
1670
+ "step": 27700
1671
+ },
1672
+ {
1673
+ "epoch": 0.47,
1674
+ "learning_rate": 2.6454645549250446e-05,
1675
+ "loss": 3.2292,
1676
+ "step": 27800
1677
+ },
1678
+ {
1679
+ "epoch": 0.47,
1680
+ "learning_rate": 2.6369950029643432e-05,
1681
+ "loss": 3.2308,
1682
+ "step": 27900
1683
+ },
1684
+ {
1685
+ "epoch": 0.47,
1686
+ "learning_rate": 2.628525451003642e-05,
1687
+ "loss": 3.2243,
1688
+ "step": 28000
1689
+ },
1690
+ {
1691
+ "epoch": 0.48,
1692
+ "learning_rate": 2.6200558990429408e-05,
1693
+ "loss": 3.2343,
1694
+ "step": 28100
1695
+ },
1696
+ {
1697
+ "epoch": 0.48,
1698
+ "learning_rate": 2.6115863470822394e-05,
1699
+ "loss": 3.237,
1700
+ "step": 28200
1701
+ },
1702
+ {
1703
+ "epoch": 0.48,
1704
+ "learning_rate": 2.603116795121538e-05,
1705
+ "loss": 3.2222,
1706
+ "step": 28300
1707
+ },
1708
+ {
1709
+ "epoch": 0.48,
1710
+ "learning_rate": 2.5946472431608372e-05,
1711
+ "loss": 3.234,
1712
+ "step": 28400
1713
+ },
1714
+ {
1715
+ "epoch": 0.48,
1716
+ "learning_rate": 2.5861776912001355e-05,
1717
+ "loss": 3.2234,
1718
+ "step": 28500
1719
+ },
1720
+ {
1721
+ "epoch": 0.48,
1722
+ "learning_rate": 2.577708139239434e-05,
1723
+ "loss": 3.2333,
1724
+ "step": 28600
1725
+ },
1726
+ {
1727
+ "epoch": 0.49,
1728
+ "learning_rate": 2.5692385872787333e-05,
1729
+ "loss": 3.2221,
1730
+ "step": 28700
1731
+ },
1732
+ {
1733
+ "epoch": 0.49,
1734
+ "learning_rate": 2.560769035318032e-05,
1735
+ "loss": 3.2205,
1736
+ "step": 28800
1737
+ },
1738
+ {
1739
+ "epoch": 0.49,
1740
+ "learning_rate": 2.5522994833573305e-05,
1741
+ "loss": 3.2371,
1742
+ "step": 28900
1743
+ },
1744
+ {
1745
+ "epoch": 0.49,
1746
+ "learning_rate": 2.543829931396629e-05,
1747
+ "loss": 3.2169,
1748
+ "step": 29000
1749
+ },
1750
+ {
1751
+ "epoch": 0.49,
1752
+ "learning_rate": 2.535360379435928e-05,
1753
+ "loss": 3.2225,
1754
+ "step": 29100
1755
+ },
1756
+ {
1757
+ "epoch": 0.49,
1758
+ "learning_rate": 2.5268908274752267e-05,
1759
+ "loss": 3.2218,
1760
+ "step": 29200
1761
+ },
1762
+ {
1763
+ "epoch": 0.5,
1764
+ "learning_rate": 2.5184212755145253e-05,
1765
+ "loss": 3.2285,
1766
+ "step": 29300
1767
+ },
1768
+ {
1769
+ "epoch": 0.5,
1770
+ "learning_rate": 2.509951723553824e-05,
1771
+ "loss": 3.2374,
1772
+ "step": 29400
1773
+ },
1774
+ {
1775
+ "epoch": 0.5,
1776
+ "learning_rate": 2.501482171593123e-05,
1777
+ "loss": 3.2276,
1778
+ "step": 29500
1779
+ },
1780
+ {
1781
+ "epoch": 0.5,
1782
+ "learning_rate": 2.4930126196324217e-05,
1783
+ "loss": 3.2242,
1784
+ "step": 29600
1785
+ },
1786
+ {
1787
+ "epoch": 0.5,
1788
+ "learning_rate": 2.4845430676717203e-05,
1789
+ "loss": 3.2227,
1790
+ "step": 29700
1791
+ },
1792
+ {
1793
+ "epoch": 0.5,
1794
+ "learning_rate": 2.476073515711019e-05,
1795
+ "loss": 3.2058,
1796
+ "step": 29800
1797
+ },
1798
+ {
1799
+ "epoch": 0.51,
1800
+ "learning_rate": 2.4676039637503175e-05,
1801
+ "loss": 3.2233,
1802
+ "step": 29900
1803
+ },
1804
+ {
1805
+ "epoch": 0.51,
1806
+ "learning_rate": 2.4591344117896164e-05,
1807
+ "loss": 3.2197,
1808
+ "step": 30000
1809
+ },
1810
+ {
1811
+ "epoch": 0.51,
1812
+ "learning_rate": 2.4506648598289154e-05,
1813
+ "loss": 3.2137,
1814
+ "step": 30100
1815
+ },
1816
+ {
1817
+ "epoch": 0.51,
1818
+ "learning_rate": 2.442195307868214e-05,
1819
+ "loss": 3.2201,
1820
+ "step": 30200
1821
+ },
1822
+ {
1823
+ "epoch": 0.51,
1824
+ "learning_rate": 2.4337257559075126e-05,
1825
+ "loss": 3.2254,
1826
+ "step": 30300
1827
+ },
1828
+ {
1829
+ "epoch": 0.51,
1830
+ "learning_rate": 2.425256203946811e-05,
1831
+ "loss": 3.2302,
1832
+ "step": 30400
1833
+ },
1834
+ {
1835
+ "epoch": 0.52,
1836
+ "learning_rate": 2.41678665198611e-05,
1837
+ "loss": 3.2154,
1838
+ "step": 30500
1839
+ },
1840
+ {
1841
+ "epoch": 0.52,
1842
+ "learning_rate": 2.4083171000254087e-05,
1843
+ "loss": 3.2012,
1844
+ "step": 30600
1845
+ },
1846
+ {
1847
+ "epoch": 0.52,
1848
+ "learning_rate": 2.3998475480647076e-05,
1849
+ "loss": 3.2228,
1850
+ "step": 30700
1851
+ },
1852
+ {
1853
+ "epoch": 0.52,
1854
+ "learning_rate": 2.3913779961040062e-05,
1855
+ "loss": 3.2212,
1856
+ "step": 30800
1857
+ },
1858
+ {
1859
+ "epoch": 0.52,
1860
+ "learning_rate": 2.382908444143305e-05,
1861
+ "loss": 3.222,
1862
+ "step": 30900
1863
+ },
1864
+ {
1865
+ "epoch": 0.53,
1866
+ "learning_rate": 2.3744388921826034e-05,
1867
+ "loss": 3.215,
1868
+ "step": 31000
1869
+ },
1870
+ {
1871
+ "epoch": 0.53,
1872
+ "learning_rate": 2.3659693402219023e-05,
1873
+ "loss": 3.2235,
1874
+ "step": 31100
1875
+ },
1876
+ {
1877
+ "epoch": 0.53,
1878
+ "learning_rate": 2.357499788261201e-05,
1879
+ "loss": 3.2163,
1880
+ "step": 31200
1881
+ },
1882
+ {
1883
+ "epoch": 0.53,
1884
+ "learning_rate": 2.3490302363005e-05,
1885
+ "loss": 3.2061,
1886
+ "step": 31300
1887
+ },
1888
+ {
1889
+ "epoch": 0.53,
1890
+ "learning_rate": 2.3405606843397985e-05,
1891
+ "loss": 3.2124,
1892
+ "step": 31400
1893
+ },
1894
+ {
1895
+ "epoch": 0.53,
1896
+ "learning_rate": 2.3320911323790974e-05,
1897
+ "loss": 3.217,
1898
+ "step": 31500
1899
+ },
1900
+ {
1901
+ "epoch": 0.54,
1902
+ "learning_rate": 2.323621580418396e-05,
1903
+ "loss": 3.2221,
1904
+ "step": 31600
1905
+ },
1906
+ {
1907
+ "epoch": 0.54,
1908
+ "learning_rate": 2.3151520284576946e-05,
1909
+ "loss": 3.2334,
1910
+ "step": 31700
1911
+ },
1912
+ {
1913
+ "epoch": 0.54,
1914
+ "learning_rate": 2.3066824764969935e-05,
1915
+ "loss": 3.2209,
1916
+ "step": 31800
1917
+ },
1918
+ {
1919
+ "epoch": 0.54,
1920
+ "learning_rate": 2.298212924536292e-05,
1921
+ "loss": 3.2292,
1922
+ "step": 31900
1923
+ },
1924
+ {
1925
+ "epoch": 0.54,
1926
+ "learning_rate": 2.289743372575591e-05,
1927
+ "loss": 3.2192,
1928
+ "step": 32000
1929
+ },
1930
+ {
1931
+ "epoch": 0.54,
1932
+ "learning_rate": 2.2812738206148897e-05,
1933
+ "loss": 3.2103,
1934
+ "step": 32100
1935
+ },
1936
+ {
1937
+ "epoch": 0.55,
1938
+ "learning_rate": 2.2728042686541883e-05,
1939
+ "loss": 3.2196,
1940
+ "step": 32200
1941
+ },
1942
+ {
1943
+ "epoch": 0.55,
1944
+ "learning_rate": 2.264334716693487e-05,
1945
+ "loss": 3.2,
1946
+ "step": 32300
1947
+ },
1948
+ {
1949
+ "epoch": 0.55,
1950
+ "learning_rate": 2.2558651647327858e-05,
1951
+ "loss": 3.2053,
1952
+ "step": 32400
1953
+ },
1954
+ {
1955
+ "epoch": 0.55,
1956
+ "learning_rate": 2.2473956127720844e-05,
1957
+ "loss": 3.2075,
1958
+ "step": 32500
1959
+ },
1960
+ {
1961
+ "epoch": 0.55,
1962
+ "learning_rate": 2.2389260608113833e-05,
1963
+ "loss": 3.2158,
1964
+ "step": 32600
1965
+ },
1966
+ {
1967
+ "epoch": 0.55,
1968
+ "learning_rate": 2.230456508850682e-05,
1969
+ "loss": 3.2149,
1970
+ "step": 32700
1971
+ },
1972
+ {
1973
+ "epoch": 0.56,
1974
+ "learning_rate": 2.2219869568899805e-05,
1975
+ "loss": 3.2082,
1976
+ "step": 32800
1977
+ },
1978
+ {
1979
+ "epoch": 0.56,
1980
+ "learning_rate": 2.213517404929279e-05,
1981
+ "loss": 3.2068,
1982
+ "step": 32900
1983
+ },
1984
+ {
1985
+ "epoch": 0.56,
1986
+ "learning_rate": 2.205047852968578e-05,
1987
+ "loss": 3.2078,
1988
+ "step": 33000
1989
+ },
1990
+ {
1991
+ "epoch": 0.56,
1992
+ "learning_rate": 2.196578301007877e-05,
1993
+ "loss": 3.2165,
1994
+ "step": 33100
1995
+ },
1996
+ {
1997
+ "epoch": 0.56,
1998
+ "learning_rate": 2.1881087490471756e-05,
1999
+ "loss": 3.2233,
2000
+ "step": 33200
2001
+ },
2002
+ {
2003
+ "epoch": 0.56,
2004
+ "learning_rate": 2.1796391970864745e-05,
2005
+ "loss": 3.2029,
2006
+ "step": 33300
2007
+ },
2008
+ {
2009
+ "epoch": 0.57,
2010
+ "learning_rate": 2.171169645125773e-05,
2011
+ "loss": 3.2079,
2012
+ "step": 33400
2013
+ },
2014
+ {
2015
+ "epoch": 0.57,
2016
+ "learning_rate": 2.1627000931650717e-05,
2017
+ "loss": 3.2147,
2018
+ "step": 33500
2019
+ },
2020
+ {
2021
+ "epoch": 0.57,
2022
+ "learning_rate": 2.1542305412043703e-05,
2023
+ "loss": 3.2175,
2024
+ "step": 33600
2025
+ },
2026
+ {
2027
+ "epoch": 0.57,
2028
+ "learning_rate": 2.1457609892436692e-05,
2029
+ "loss": 3.2167,
2030
+ "step": 33700
2031
+ },
2032
+ {
2033
+ "epoch": 0.57,
2034
+ "learning_rate": 2.1372914372829678e-05,
2035
+ "loss": 3.1926,
2036
+ "step": 33800
2037
+ },
2038
+ {
2039
+ "epoch": 0.57,
2040
+ "learning_rate": 2.1288218853222667e-05,
2041
+ "loss": 3.198,
2042
+ "step": 33900
2043
+ },
2044
+ {
2045
+ "epoch": 0.58,
2046
+ "learning_rate": 2.1203523333615653e-05,
2047
+ "loss": 3.2076,
2048
+ "step": 34000
2049
+ },
2050
+ {
2051
+ "epoch": 0.58,
2052
+ "learning_rate": 2.111882781400864e-05,
2053
+ "loss": 3.2119,
2054
+ "step": 34100
2055
+ },
2056
+ {
2057
+ "epoch": 0.58,
2058
+ "learning_rate": 2.1034132294401625e-05,
2059
+ "loss": 3.2017,
2060
+ "step": 34200
2061
+ },
2062
+ {
2063
+ "epoch": 0.58,
2064
+ "learning_rate": 2.0949436774794615e-05,
2065
+ "loss": 3.2065,
2066
+ "step": 34300
2067
+ },
2068
+ {
2069
+ "epoch": 0.58,
2070
+ "learning_rate": 2.08647412551876e-05,
2071
+ "loss": 3.1921,
2072
+ "step": 34400
2073
+ },
2074
+ {
2075
+ "epoch": 0.58,
2076
+ "learning_rate": 2.078004573558059e-05,
2077
+ "loss": 3.2301,
2078
+ "step": 34500
2079
+ },
2080
+ {
2081
+ "epoch": 0.59,
2082
+ "learning_rate": 2.0695350215973576e-05,
2083
+ "loss": 3.2104,
2084
+ "step": 34600
2085
+ },
2086
+ {
2087
+ "epoch": 0.59,
2088
+ "learning_rate": 2.0610654696366562e-05,
2089
+ "loss": 3.1944,
2090
+ "step": 34700
2091
+ },
2092
+ {
2093
+ "epoch": 0.59,
2094
+ "learning_rate": 2.052595917675955e-05,
2095
+ "loss": 3.2097,
2096
+ "step": 34800
2097
+ },
2098
+ {
2099
+ "epoch": 0.59,
2100
+ "learning_rate": 2.0441263657152537e-05,
2101
+ "loss": 3.1961,
2102
+ "step": 34900
2103
+ },
2104
+ {
2105
+ "epoch": 0.59,
2106
+ "learning_rate": 2.0356568137545526e-05,
2107
+ "loss": 3.2053,
2108
+ "step": 35000
2109
+ },
2110
+ {
2111
+ "epoch": 0.59,
2112
+ "learning_rate": 2.0271872617938512e-05,
2113
+ "loss": 3.1948,
2114
+ "step": 35100
2115
+ },
2116
+ {
2117
+ "epoch": 0.6,
2118
+ "learning_rate": 2.01871770983315e-05,
2119
+ "loss": 3.2027,
2120
+ "step": 35200
2121
+ },
2122
+ {
2123
+ "epoch": 0.6,
2124
+ "learning_rate": 2.0102481578724484e-05,
2125
+ "loss": 3.2068,
2126
+ "step": 35300
2127
+ },
2128
+ {
2129
+ "epoch": 0.6,
2130
+ "learning_rate": 2.0017786059117474e-05,
2131
+ "loss": 3.2119,
2132
+ "step": 35400
2133
+ },
2134
+ {
2135
+ "epoch": 0.6,
2136
+ "learning_rate": 1.993309053951046e-05,
2137
+ "loss": 3.1933,
2138
+ "step": 35500
2139
+ },
2140
+ {
2141
+ "epoch": 0.6,
2142
+ "learning_rate": 1.984839501990345e-05,
2143
+ "loss": 3.1979,
2144
+ "step": 35600
2145
+ },
2146
+ {
2147
+ "epoch": 0.6,
2148
+ "learning_rate": 1.9763699500296435e-05,
2149
+ "loss": 3.2042,
2150
+ "step": 35700
2151
+ },
2152
+ {
2153
+ "epoch": 0.61,
2154
+ "learning_rate": 1.9679003980689424e-05,
2155
+ "loss": 3.1985,
2156
+ "step": 35800
2157
+ },
2158
+ {
2159
+ "epoch": 0.61,
2160
+ "learning_rate": 1.9594308461082407e-05,
2161
+ "loss": 3.2023,
2162
+ "step": 35900
2163
+ },
2164
+ {
2165
+ "epoch": 0.61,
2166
+ "learning_rate": 1.9509612941475396e-05,
2167
+ "loss": 3.2023,
2168
+ "step": 36000
2169
+ },
2170
+ {
2171
+ "epoch": 0.61,
2172
+ "learning_rate": 1.9424917421868386e-05,
2173
+ "loss": 3.2116,
2174
+ "step": 36100
2175
+ },
2176
+ {
2177
+ "epoch": 0.61,
2178
+ "learning_rate": 1.934022190226137e-05,
2179
+ "loss": 3.1966,
2180
+ "step": 36200
2181
+ },
2182
+ {
2183
+ "epoch": 0.61,
2184
+ "learning_rate": 1.925552638265436e-05,
2185
+ "loss": 3.1994,
2186
+ "step": 36300
2187
+ },
2188
+ {
2189
+ "epoch": 0.62,
2190
+ "learning_rate": 1.9170830863047347e-05,
2191
+ "loss": 3.1967,
2192
+ "step": 36400
2193
+ },
2194
+ {
2195
+ "epoch": 0.62,
2196
+ "learning_rate": 1.9086135343440333e-05,
2197
+ "loss": 3.2149,
2198
+ "step": 36500
2199
+ },
2200
+ {
2201
+ "epoch": 0.62,
2202
+ "learning_rate": 1.900143982383332e-05,
2203
+ "loss": 3.202,
2204
+ "step": 36600
2205
+ },
2206
+ {
2207
+ "epoch": 0.62,
2208
+ "learning_rate": 1.8916744304226308e-05,
2209
+ "loss": 3.2015,
2210
+ "step": 36700
2211
+ },
2212
+ {
2213
+ "epoch": 0.62,
2214
+ "learning_rate": 1.8832048784619294e-05,
2215
+ "loss": 3.2088,
2216
+ "step": 36800
2217
+ },
2218
+ {
2219
+ "epoch": 0.63,
2220
+ "learning_rate": 1.8747353265012283e-05,
2221
+ "loss": 3.1967,
2222
+ "step": 36900
2223
+ },
2224
+ {
2225
+ "epoch": 0.63,
2226
+ "learning_rate": 1.866265774540527e-05,
2227
+ "loss": 3.2063,
2228
+ "step": 37000
2229
+ },
2230
+ {
2231
+ "epoch": 0.63,
2232
+ "learning_rate": 1.8577962225798255e-05,
2233
+ "loss": 3.2164,
2234
+ "step": 37100
2235
+ },
2236
+ {
2237
+ "epoch": 0.63,
2238
+ "learning_rate": 1.849326670619124e-05,
2239
+ "loss": 3.177,
2240
+ "step": 37200
2241
+ },
2242
+ {
2243
+ "epoch": 0.63,
2244
+ "learning_rate": 1.840857118658423e-05,
2245
+ "loss": 3.1965,
2246
+ "step": 37300
2247
+ },
2248
+ {
2249
+ "epoch": 0.63,
2250
+ "learning_rate": 1.8323875666977216e-05,
2251
+ "loss": 3.1846,
2252
+ "step": 37400
2253
+ },
2254
+ {
2255
+ "epoch": 0.64,
2256
+ "learning_rate": 1.8239180147370206e-05,
2257
+ "loss": 3.1875,
2258
+ "step": 37500
2259
+ },
2260
+ {
2261
+ "epoch": 0.64,
2262
+ "learning_rate": 1.8154484627763192e-05,
2263
+ "loss": 3.2023,
2264
+ "step": 37600
2265
+ },
2266
+ {
2267
+ "epoch": 0.64,
2268
+ "learning_rate": 1.8069789108156178e-05,
2269
+ "loss": 3.203,
2270
+ "step": 37700
2271
+ },
2272
+ {
2273
+ "epoch": 0.64,
2274
+ "learning_rate": 1.7985093588549167e-05,
2275
+ "loss": 3.1991,
2276
+ "step": 37800
2277
+ },
2278
+ {
2279
+ "epoch": 0.64,
2280
+ "learning_rate": 1.7900398068942153e-05,
2281
+ "loss": 3.2008,
2282
+ "step": 37900
2283
+ },
2284
+ {
2285
+ "epoch": 0.64,
2286
+ "learning_rate": 1.7815702549335142e-05,
2287
+ "loss": 3.1955,
2288
+ "step": 38000
2289
+ },
2290
+ {
2291
+ "epoch": 0.65,
2292
+ "learning_rate": 1.7731007029728128e-05,
2293
+ "loss": 3.1963,
2294
+ "step": 38100
2295
+ },
2296
+ {
2297
+ "epoch": 0.65,
2298
+ "learning_rate": 1.7646311510121118e-05,
2299
+ "loss": 3.1964,
2300
+ "step": 38200
2301
+ },
2302
+ {
2303
+ "epoch": 0.65,
2304
+ "learning_rate": 1.7561615990514104e-05,
2305
+ "loss": 3.1881,
2306
+ "step": 38300
2307
+ },
2308
+ {
2309
+ "epoch": 0.65,
2310
+ "learning_rate": 1.747692047090709e-05,
2311
+ "loss": 3.1924,
2312
+ "step": 38400
2313
+ },
2314
+ {
2315
+ "epoch": 0.65,
2316
+ "learning_rate": 1.7392224951300075e-05,
2317
+ "loss": 3.1953,
2318
+ "step": 38500
2319
+ },
2320
+ {
2321
+ "epoch": 0.65,
2322
+ "learning_rate": 1.7307529431693065e-05,
2323
+ "loss": 3.1933,
2324
+ "step": 38600
2325
+ },
2326
+ {
2327
+ "epoch": 0.66,
2328
+ "learning_rate": 1.722283391208605e-05,
2329
+ "loss": 3.1976,
2330
+ "step": 38700
2331
+ },
2332
+ {
2333
+ "epoch": 0.66,
2334
+ "learning_rate": 1.713813839247904e-05,
2335
+ "loss": 3.1868,
2336
+ "step": 38800
2337
+ },
2338
+ {
2339
+ "epoch": 0.66,
2340
+ "learning_rate": 1.7053442872872026e-05,
2341
+ "loss": 3.191,
2342
+ "step": 38900
2343
+ },
2344
+ {
2345
+ "epoch": 0.66,
2346
+ "learning_rate": 1.6968747353265012e-05,
2347
+ "loss": 3.1914,
2348
+ "step": 39000
2349
+ },
2350
+ {
2351
+ "epoch": 0.66,
2352
+ "learning_rate": 1.6884051833657998e-05,
2353
+ "loss": 3.1831,
2354
+ "step": 39100
2355
+ },
2356
+ {
2357
+ "epoch": 0.66,
2358
+ "learning_rate": 1.6799356314050987e-05,
2359
+ "loss": 3.2032,
2360
+ "step": 39200
2361
+ },
2362
+ {
2363
+ "epoch": 0.67,
2364
+ "learning_rate": 1.6714660794443977e-05,
2365
+ "loss": 3.2008,
2366
+ "step": 39300
2367
+ },
2368
+ {
2369
+ "epoch": 0.67,
2370
+ "learning_rate": 1.6629965274836963e-05,
2371
+ "loss": 3.191,
2372
+ "step": 39400
2373
+ },
2374
+ {
2375
+ "epoch": 0.67,
2376
+ "learning_rate": 1.654526975522995e-05,
2377
+ "loss": 3.1821,
2378
+ "step": 39500
2379
+ },
2380
+ {
2381
+ "epoch": 0.67,
2382
+ "learning_rate": 1.6460574235622935e-05,
2383
+ "loss": 3.1753,
2384
+ "step": 39600
2385
+ },
2386
+ {
2387
+ "epoch": 0.67,
2388
+ "learning_rate": 1.6375878716015924e-05,
2389
+ "loss": 3.1947,
2390
+ "step": 39700
2391
+ },
2392
+ {
2393
+ "epoch": 0.67,
2394
+ "learning_rate": 1.629118319640891e-05,
2395
+ "loss": 3.1815,
2396
+ "step": 39800
2397
+ },
2398
+ {
2399
+ "epoch": 0.68,
2400
+ "learning_rate": 1.62064876768019e-05,
2401
+ "loss": 3.1991,
2402
+ "step": 39900
2403
+ },
2404
+ {
2405
+ "epoch": 0.68,
2406
+ "learning_rate": 1.6121792157194885e-05,
2407
+ "loss": 3.1912,
2408
+ "step": 40000
2409
+ },
2410
+ {
2411
+ "epoch": 0.68,
2412
+ "learning_rate": 1.6037096637587874e-05,
2413
+ "loss": 3.1912,
2414
+ "step": 40100
2415
+ },
2416
+ {
2417
+ "epoch": 0.68,
2418
+ "learning_rate": 1.5952401117980857e-05,
2419
+ "loss": 3.1865,
2420
+ "step": 40200
2421
+ },
2422
+ {
2423
+ "epoch": 0.68,
2424
+ "learning_rate": 1.5867705598373846e-05,
2425
+ "loss": 3.1933,
2426
+ "step": 40300
2427
+ },
2428
+ {
2429
+ "epoch": 0.68,
2430
+ "learning_rate": 1.5783010078766832e-05,
2431
+ "loss": 3.2054,
2432
+ "step": 40400
2433
+ },
2434
+ {
2435
+ "epoch": 0.69,
2436
+ "learning_rate": 1.569831455915982e-05,
2437
+ "loss": 3.187,
2438
+ "step": 40500
2439
+ },
2440
+ {
2441
+ "epoch": 0.69,
2442
+ "learning_rate": 1.5613619039552808e-05,
2443
+ "loss": 3.207,
2444
+ "step": 40600
2445
+ },
2446
+ {
2447
+ "epoch": 0.69,
2448
+ "learning_rate": 1.5528923519945797e-05,
2449
+ "loss": 3.1933,
2450
+ "step": 40700
2451
+ },
2452
+ {
2453
+ "epoch": 0.69,
2454
+ "learning_rate": 1.5444228000338783e-05,
2455
+ "loss": 3.1906,
2456
+ "step": 40800
2457
+ },
2458
+ {
2459
+ "epoch": 0.69,
2460
+ "learning_rate": 1.535953248073177e-05,
2461
+ "loss": 3.1899,
2462
+ "step": 40900
2463
+ },
2464
+ {
2465
+ "epoch": 0.69,
2466
+ "learning_rate": 1.5274836961124758e-05,
2467
+ "loss": 3.1834,
2468
+ "step": 41000
2469
+ },
2470
+ {
2471
+ "epoch": 0.7,
2472
+ "learning_rate": 1.5190141441517744e-05,
2473
+ "loss": 3.1793,
2474
+ "step": 41100
2475
+ },
2476
+ {
2477
+ "epoch": 0.7,
2478
+ "learning_rate": 1.5105445921910732e-05,
2479
+ "loss": 3.1903,
2480
+ "step": 41200
2481
+ },
2482
+ {
2483
+ "epoch": 0.7,
2484
+ "learning_rate": 1.5020750402303718e-05,
2485
+ "loss": 3.1749,
2486
+ "step": 41300
2487
+ },
2488
+ {
2489
+ "epoch": 0.7,
2490
+ "learning_rate": 1.4936054882696707e-05,
2491
+ "loss": 3.2057,
2492
+ "step": 41400
2493
+ },
2494
+ {
2495
+ "epoch": 0.7,
2496
+ "learning_rate": 1.4851359363089693e-05,
2497
+ "loss": 3.1976,
2498
+ "step": 41500
2499
+ },
2500
+ {
2501
+ "epoch": 0.7,
2502
+ "learning_rate": 1.476666384348268e-05,
2503
+ "loss": 3.1903,
2504
+ "step": 41600
2505
+ },
2506
+ {
2507
+ "epoch": 0.71,
2508
+ "learning_rate": 1.4681968323875667e-05,
2509
+ "loss": 3.1933,
2510
+ "step": 41700
2511
+ },
2512
+ {
2513
+ "epoch": 0.71,
2514
+ "learning_rate": 1.4597272804268656e-05,
2515
+ "loss": 3.1893,
2516
+ "step": 41800
2517
+ },
2518
+ {
2519
+ "epoch": 0.71,
2520
+ "learning_rate": 1.451257728466164e-05,
2521
+ "loss": 3.1758,
2522
+ "step": 41900
2523
+ },
2524
+ {
2525
+ "epoch": 0.71,
2526
+ "learning_rate": 1.442788176505463e-05,
2527
+ "loss": 3.1862,
2528
+ "step": 42000
2529
+ },
2530
+ {
2531
+ "epoch": 0.71,
2532
+ "learning_rate": 1.4343186245447616e-05,
2533
+ "loss": 3.1919,
2534
+ "step": 42100
2535
+ },
2536
+ {
2537
+ "epoch": 0.71,
2538
+ "learning_rate": 1.4258490725840603e-05,
2539
+ "loss": 3.1743,
2540
+ "step": 42200
2541
+ },
2542
+ {
2543
+ "epoch": 0.72,
2544
+ "learning_rate": 1.4173795206233593e-05,
2545
+ "loss": 3.1762,
2546
+ "step": 42300
2547
+ },
2548
+ {
2549
+ "epoch": 0.72,
2550
+ "learning_rate": 1.4089099686626578e-05,
2551
+ "loss": 3.1939,
2552
+ "step": 42400
2553
+ },
2554
+ {
2555
+ "epoch": 0.72,
2556
+ "learning_rate": 1.4004404167019566e-05,
2557
+ "loss": 3.1814,
2558
+ "step": 42500
2559
+ },
2560
+ {
2561
+ "epoch": 0.72,
2562
+ "learning_rate": 1.3919708647412552e-05,
2563
+ "loss": 3.1925,
2564
+ "step": 42600
2565
+ },
2566
+ {
2567
+ "epoch": 0.72,
2568
+ "learning_rate": 1.3835013127805541e-05,
2569
+ "loss": 3.1708,
2570
+ "step": 42700
2571
+ },
2572
+ {
2573
+ "epoch": 0.72,
2574
+ "learning_rate": 1.3750317608198526e-05,
2575
+ "loss": 3.1635,
2576
+ "step": 42800
2577
+ },
2578
+ {
2579
+ "epoch": 0.73,
2580
+ "learning_rate": 1.3665622088591515e-05,
2581
+ "loss": 3.1827,
2582
+ "step": 42900
2583
+ },
2584
+ {
2585
+ "epoch": 0.73,
2586
+ "learning_rate": 1.3580926568984501e-05,
2587
+ "loss": 3.1721,
2588
+ "step": 43000
2589
+ },
2590
+ {
2591
+ "epoch": 0.73,
2592
+ "learning_rate": 1.3496231049377489e-05,
2593
+ "loss": 3.1853,
2594
+ "step": 43100
2595
+ },
2596
+ {
2597
+ "epoch": 0.73,
2598
+ "learning_rate": 1.3411535529770475e-05,
2599
+ "loss": 3.1747,
2600
+ "step": 43200
2601
+ },
2602
+ {
2603
+ "epoch": 0.73,
2604
+ "learning_rate": 1.3326840010163464e-05,
2605
+ "loss": 3.1799,
2606
+ "step": 43300
2607
+ },
2608
+ {
2609
+ "epoch": 0.74,
2610
+ "learning_rate": 1.3242144490556448e-05,
2611
+ "loss": 3.1843,
2612
+ "step": 43400
2613
+ },
2614
+ {
2615
+ "epoch": 0.74,
2616
+ "learning_rate": 1.3157448970949438e-05,
2617
+ "loss": 3.1985,
2618
+ "step": 43500
2619
+ },
2620
+ {
2621
+ "epoch": 0.74,
2622
+ "learning_rate": 1.3072753451342423e-05,
2623
+ "loss": 3.1907,
2624
+ "step": 43600
2625
+ },
2626
+ {
2627
+ "epoch": 0.74,
2628
+ "learning_rate": 1.2988057931735411e-05,
2629
+ "loss": 3.1804,
2630
+ "step": 43700
2631
+ },
2632
+ {
2633
+ "epoch": 0.74,
2634
+ "learning_rate": 1.29033624121284e-05,
2635
+ "loss": 3.1787,
2636
+ "step": 43800
2637
+ },
2638
+ {
2639
+ "epoch": 0.74,
2640
+ "learning_rate": 1.2818666892521386e-05,
2641
+ "loss": 3.181,
2642
+ "step": 43900
2643
+ },
2644
+ {
2645
+ "epoch": 0.75,
2646
+ "learning_rate": 1.2733971372914374e-05,
2647
+ "loss": 3.1677,
2648
+ "step": 44000
2649
+ },
2650
+ {
2651
+ "epoch": 0.75,
2652
+ "learning_rate": 1.264927585330736e-05,
2653
+ "loss": 3.1876,
2654
+ "step": 44100
2655
+ },
2656
+ {
2657
+ "epoch": 0.75,
2658
+ "learning_rate": 1.256458033370035e-05,
2659
+ "loss": 3.1952,
2660
+ "step": 44200
2661
+ },
2662
+ {
2663
+ "epoch": 0.75,
2664
+ "learning_rate": 1.2479884814093334e-05,
2665
+ "loss": 3.1881,
2666
+ "step": 44300
2667
+ },
2668
+ {
2669
+ "epoch": 0.75,
2670
+ "learning_rate": 1.2395189294486323e-05,
2671
+ "loss": 3.1789,
2672
+ "step": 44400
2673
+ },
2674
+ {
2675
+ "epoch": 0.75,
2676
+ "learning_rate": 1.231049377487931e-05,
2677
+ "loss": 3.177,
2678
+ "step": 44500
2679
+ },
2680
+ {
2681
+ "epoch": 0.76,
2682
+ "learning_rate": 1.2225798255272297e-05,
2683
+ "loss": 3.1733,
2684
+ "step": 44600
2685
+ },
2686
+ {
2687
+ "epoch": 0.76,
2688
+ "learning_rate": 1.2141102735665284e-05,
2689
+ "loss": 3.17,
2690
+ "step": 44700
2691
+ },
2692
+ {
2693
+ "epoch": 0.76,
2694
+ "learning_rate": 1.2056407216058272e-05,
2695
+ "loss": 3.1849,
2696
+ "step": 44800
2697
+ },
2698
+ {
2699
+ "epoch": 0.76,
2700
+ "learning_rate": 1.1971711696451258e-05,
2701
+ "loss": 3.1875,
2702
+ "step": 44900
2703
+ },
2704
+ {
2705
+ "epoch": 0.76,
2706
+ "learning_rate": 1.1887016176844245e-05,
2707
+ "loss": 3.1659,
2708
+ "step": 45000
2709
+ },
2710
+ {
2711
+ "epoch": 0.76,
2712
+ "learning_rate": 1.1802320657237233e-05,
2713
+ "loss": 3.1877,
2714
+ "step": 45100
2715
+ },
2716
+ {
2717
+ "epoch": 0.77,
2718
+ "learning_rate": 1.1717625137630219e-05,
2719
+ "loss": 3.1808,
2720
+ "step": 45200
2721
+ },
2722
+ {
2723
+ "epoch": 0.77,
2724
+ "learning_rate": 1.1632929618023207e-05,
2725
+ "loss": 3.1831,
2726
+ "step": 45300
2727
+ },
2728
+ {
2729
+ "epoch": 0.77,
2730
+ "learning_rate": 1.1548234098416194e-05,
2731
+ "loss": 3.1852,
2732
+ "step": 45400
2733
+ },
2734
+ {
2735
+ "epoch": 0.77,
2736
+ "learning_rate": 1.1463538578809182e-05,
2737
+ "loss": 3.1855,
2738
+ "step": 45500
2739
+ },
2740
+ {
2741
+ "epoch": 0.77,
2742
+ "learning_rate": 1.1378843059202168e-05,
2743
+ "loss": 3.1771,
2744
+ "step": 45600
2745
+ },
2746
+ {
2747
+ "epoch": 0.77,
2748
+ "learning_rate": 1.1294147539595156e-05,
2749
+ "loss": 3.1826,
2750
+ "step": 45700
2751
+ },
2752
+ {
2753
+ "epoch": 0.78,
2754
+ "learning_rate": 1.1209452019988143e-05,
2755
+ "loss": 3.1634,
2756
+ "step": 45800
2757
+ },
2758
+ {
2759
+ "epoch": 0.78,
2760
+ "learning_rate": 1.1124756500381131e-05,
2761
+ "loss": 3.1812,
2762
+ "step": 45900
2763
+ },
2764
+ {
2765
+ "epoch": 0.78,
2766
+ "learning_rate": 1.1040060980774119e-05,
2767
+ "loss": 3.1836,
2768
+ "step": 46000
2769
+ },
2770
+ {
2771
+ "epoch": 0.78,
2772
+ "learning_rate": 1.0955365461167104e-05,
2773
+ "loss": 3.1879,
2774
+ "step": 46100
2775
+ },
2776
+ {
2777
+ "epoch": 0.78,
2778
+ "learning_rate": 1.0870669941560092e-05,
2779
+ "loss": 3.1714,
2780
+ "step": 46200
2781
+ },
2782
+ {
2783
+ "epoch": 0.78,
2784
+ "learning_rate": 1.078597442195308e-05,
2785
+ "loss": 3.1747,
2786
+ "step": 46300
2787
+ },
2788
+ {
2789
+ "epoch": 0.79,
2790
+ "learning_rate": 1.0701278902346067e-05,
2791
+ "loss": 3.1795,
2792
+ "step": 46400
2793
+ },
2794
+ {
2795
+ "epoch": 0.79,
2796
+ "learning_rate": 1.0616583382739053e-05,
2797
+ "loss": 3.1776,
2798
+ "step": 46500
2799
+ },
2800
+ {
2801
+ "epoch": 0.79,
2802
+ "learning_rate": 1.0531887863132041e-05,
2803
+ "loss": 3.1687,
2804
+ "step": 46600
2805
+ },
2806
+ {
2807
+ "epoch": 0.79,
2808
+ "learning_rate": 1.0447192343525029e-05,
2809
+ "loss": 3.1842,
2810
+ "step": 46700
2811
+ },
2812
+ {
2813
+ "epoch": 0.79,
2814
+ "learning_rate": 1.0362496823918015e-05,
2815
+ "loss": 3.1702,
2816
+ "step": 46800
2817
+ },
2818
+ {
2819
+ "epoch": 0.79,
2820
+ "learning_rate": 1.0277801304311002e-05,
2821
+ "loss": 3.1601,
2822
+ "step": 46900
2823
+ },
2824
+ {
2825
+ "epoch": 0.8,
2826
+ "learning_rate": 1.019310578470399e-05,
2827
+ "loss": 3.1822,
2828
+ "step": 47000
2829
+ },
2830
+ {
2831
+ "epoch": 0.8,
2832
+ "learning_rate": 1.0108410265096976e-05,
2833
+ "loss": 3.1776,
2834
+ "step": 47100
2835
+ },
2836
+ {
2837
+ "epoch": 0.8,
2838
+ "learning_rate": 1.0023714745489964e-05,
2839
+ "loss": 3.1768,
2840
+ "step": 47200
2841
+ },
2842
+ {
2843
+ "epoch": 0.8,
2844
+ "learning_rate": 9.939019225882951e-06,
2845
+ "loss": 3.1709,
2846
+ "step": 47300
2847
+ },
2848
+ {
2849
+ "epoch": 0.8,
2850
+ "learning_rate": 9.854323706275939e-06,
2851
+ "loss": 3.172,
2852
+ "step": 47400
2853
+ },
2854
+ {
2855
+ "epoch": 0.8,
2856
+ "learning_rate": 9.769628186668926e-06,
2857
+ "loss": 3.1755,
2858
+ "step": 47500
2859
+ },
2860
+ {
2861
+ "epoch": 0.81,
2862
+ "learning_rate": 9.684932667061914e-06,
2863
+ "loss": 3.1717,
2864
+ "step": 47600
2865
+ },
2866
+ {
2867
+ "epoch": 0.81,
2868
+ "learning_rate": 9.6002371474549e-06,
2869
+ "loss": 3.1659,
2870
+ "step": 47700
2871
+ },
2872
+ {
2873
+ "epoch": 0.81,
2874
+ "learning_rate": 9.515541627847888e-06,
2875
+ "loss": 3.1713,
2876
+ "step": 47800
2877
+ },
2878
+ {
2879
+ "epoch": 0.81,
2880
+ "learning_rate": 9.430846108240875e-06,
2881
+ "loss": 3.1833,
2882
+ "step": 47900
2883
+ },
2884
+ {
2885
+ "epoch": 0.81,
2886
+ "learning_rate": 9.346150588633861e-06,
2887
+ "loss": 3.1755,
2888
+ "step": 48000
2889
+ },
2890
+ {
2891
+ "epoch": 0.81,
2892
+ "learning_rate": 9.261455069026849e-06,
2893
+ "loss": 3.1693,
2894
+ "step": 48100
2895
+ },
2896
+ {
2897
+ "epoch": 0.82,
2898
+ "learning_rate": 9.176759549419837e-06,
2899
+ "loss": 3.1777,
2900
+ "step": 48200
2901
+ },
2902
+ {
2903
+ "epoch": 0.82,
2904
+ "learning_rate": 9.092064029812823e-06,
2905
+ "loss": 3.1638,
2906
+ "step": 48300
2907
+ },
2908
+ {
2909
+ "epoch": 0.82,
2910
+ "learning_rate": 9.00736851020581e-06,
2911
+ "loss": 3.1786,
2912
+ "step": 48400
2913
+ },
2914
+ {
2915
+ "epoch": 0.82,
2916
+ "learning_rate": 8.922672990598798e-06,
2917
+ "loss": 3.1759,
2918
+ "step": 48500
2919
+ },
2920
+ {
2921
+ "epoch": 0.82,
2922
+ "learning_rate": 8.837977470991784e-06,
2923
+ "loss": 3.1712,
2924
+ "step": 48600
2925
+ },
2926
+ {
2927
+ "epoch": 0.82,
2928
+ "learning_rate": 8.753281951384771e-06,
2929
+ "loss": 3.1689,
2930
+ "step": 48700
2931
+ },
2932
+ {
2933
+ "epoch": 0.83,
2934
+ "learning_rate": 8.668586431777759e-06,
2935
+ "loss": 3.1861,
2936
+ "step": 48800
2937
+ },
2938
+ {
2939
+ "epoch": 0.83,
2940
+ "learning_rate": 8.583890912170747e-06,
2941
+ "loss": 3.1732,
2942
+ "step": 48900
2943
+ },
2944
+ {
2945
+ "epoch": 0.83,
2946
+ "learning_rate": 8.499195392563734e-06,
2947
+ "loss": 3.1735,
2948
+ "step": 49000
2949
+ },
2950
+ {
2951
+ "epoch": 0.83,
2952
+ "learning_rate": 8.414499872956722e-06,
2953
+ "loss": 3.1827,
2954
+ "step": 49100
2955
+ },
2956
+ {
2957
+ "epoch": 0.83,
2958
+ "learning_rate": 8.329804353349708e-06,
2959
+ "loss": 3.1681,
2960
+ "step": 49200
2961
+ },
2962
+ {
2963
+ "epoch": 0.84,
2964
+ "learning_rate": 8.245108833742696e-06,
2965
+ "loss": 3.1506,
2966
+ "step": 49300
2967
+ },
2968
+ {
2969
+ "epoch": 0.84,
2970
+ "learning_rate": 8.160413314135683e-06,
2971
+ "loss": 3.1628,
2972
+ "step": 49400
2973
+ },
2974
+ {
2975
+ "epoch": 0.84,
2976
+ "learning_rate": 8.07571779452867e-06,
2977
+ "loss": 3.1808,
2978
+ "step": 49500
2979
+ },
2980
+ {
2981
+ "epoch": 0.84,
2982
+ "learning_rate": 7.991022274921657e-06,
2983
+ "loss": 3.1682,
2984
+ "step": 49600
2985
+ },
2986
+ {
2987
+ "epoch": 0.84,
2988
+ "learning_rate": 7.906326755314645e-06,
2989
+ "loss": 3.1668,
2990
+ "step": 49700
2991
+ },
2992
+ {
2993
+ "epoch": 0.84,
2994
+ "learning_rate": 7.82163123570763e-06,
2995
+ "loss": 3.1663,
2996
+ "step": 49800
2997
+ },
2998
+ {
2999
+ "epoch": 0.85,
3000
+ "learning_rate": 7.736935716100618e-06,
3001
+ "loss": 3.1656,
3002
+ "step": 49900
3003
+ },
3004
+ {
3005
+ "epoch": 0.85,
3006
+ "learning_rate": 7.652240196493606e-06,
3007
+ "loss": 3.1749,
3008
+ "step": 50000
3009
+ },
3010
+ {
3011
+ "epoch": 0.85,
3012
+ "learning_rate": 7.567544676886593e-06,
3013
+ "loss": 3.1667,
3014
+ "step": 50100
3015
+ },
3016
+ {
3017
+ "epoch": 0.85,
3018
+ "learning_rate": 7.482849157279579e-06,
3019
+ "loss": 3.1658,
3020
+ "step": 50200
3021
+ },
3022
+ {
3023
+ "epoch": 0.85,
3024
+ "learning_rate": 7.398153637672567e-06,
3025
+ "loss": 3.1689,
3026
+ "step": 50300
3027
+ },
3028
+ {
3029
+ "epoch": 0.85,
3030
+ "learning_rate": 7.3134581180655555e-06,
3031
+ "loss": 3.1652,
3032
+ "step": 50400
3033
+ },
3034
+ {
3035
+ "epoch": 0.86,
3036
+ "learning_rate": 7.228762598458542e-06,
3037
+ "loss": 3.1625,
3038
+ "step": 50500
3039
+ },
3040
+ {
3041
+ "epoch": 0.86,
3042
+ "learning_rate": 7.14406707885153e-06,
3043
+ "loss": 3.1584,
3044
+ "step": 50600
3045
+ },
3046
+ {
3047
+ "epoch": 0.86,
3048
+ "learning_rate": 7.059371559244517e-06,
3049
+ "loss": 3.1695,
3050
+ "step": 50700
3051
+ },
3052
+ {
3053
+ "epoch": 0.86,
3054
+ "learning_rate": 6.974676039637504e-06,
3055
+ "loss": 3.1612,
3056
+ "step": 50800
3057
+ },
3058
+ {
3059
+ "epoch": 0.86,
3060
+ "learning_rate": 6.889980520030491e-06,
3061
+ "loss": 3.1564,
3062
+ "step": 50900
3063
+ },
3064
+ {
3065
+ "epoch": 0.86,
3066
+ "learning_rate": 6.805285000423478e-06,
3067
+ "loss": 3.1747,
3068
+ "step": 51000
3069
+ },
3070
+ {
3071
+ "epoch": 0.87,
3072
+ "learning_rate": 6.720589480816465e-06,
3073
+ "loss": 3.165,
3074
+ "step": 51100
3075
+ },
3076
+ {
3077
+ "epoch": 0.87,
3078
+ "learning_rate": 6.6358939612094525e-06,
3079
+ "loss": 3.1672,
3080
+ "step": 51200
3081
+ },
3082
+ {
3083
+ "epoch": 0.87,
3084
+ "learning_rate": 6.551198441602439e-06,
3085
+ "loss": 3.1618,
3086
+ "step": 51300
3087
+ },
3088
+ {
3089
+ "epoch": 0.87,
3090
+ "learning_rate": 6.466502921995427e-06,
3091
+ "loss": 3.172,
3092
+ "step": 51400
3093
+ },
3094
+ {
3095
+ "epoch": 0.87,
3096
+ "learning_rate": 6.381807402388414e-06,
3097
+ "loss": 3.1683,
3098
+ "step": 51500
3099
+ },
3100
+ {
3101
+ "epoch": 0.87,
3102
+ "learning_rate": 6.2971118827814005e-06,
3103
+ "loss": 3.1752,
3104
+ "step": 51600
3105
+ },
3106
+ {
3107
+ "epoch": 0.88,
3108
+ "learning_rate": 6.212416363174388e-06,
3109
+ "loss": 3.1698,
3110
+ "step": 51700
3111
+ },
3112
+ {
3113
+ "epoch": 0.88,
3114
+ "learning_rate": 6.127720843567376e-06,
3115
+ "loss": 3.1615,
3116
+ "step": 51800
3117
+ },
3118
+ {
3119
+ "epoch": 0.88,
3120
+ "learning_rate": 6.043025323960363e-06,
3121
+ "loss": 3.1667,
3122
+ "step": 51900
3123
+ },
3124
+ {
3125
+ "epoch": 0.88,
3126
+ "learning_rate": 5.95832980435335e-06,
3127
+ "loss": 3.1699,
3128
+ "step": 52000
3129
+ },
3130
+ {
3131
+ "epoch": 0.88,
3132
+ "learning_rate": 5.873634284746337e-06,
3133
+ "loss": 3.1621,
3134
+ "step": 52100
3135
+ },
3136
+ {
3137
+ "epoch": 0.88,
3138
+ "learning_rate": 5.788938765139324e-06,
3139
+ "loss": 3.1789,
3140
+ "step": 52200
3141
+ },
3142
+ {
3143
+ "epoch": 0.89,
3144
+ "learning_rate": 5.7042432455323115e-06,
3145
+ "loss": 3.1679,
3146
+ "step": 52300
3147
+ },
3148
+ {
3149
+ "epoch": 0.89,
3150
+ "learning_rate": 5.619547725925299e-06,
3151
+ "loss": 3.1751,
3152
+ "step": 52400
3153
+ },
3154
+ {
3155
+ "epoch": 0.89,
3156
+ "learning_rate": 5.534852206318286e-06,
3157
+ "loss": 3.1589,
3158
+ "step": 52500
3159
+ },
3160
+ {
3161
+ "epoch": 0.89,
3162
+ "learning_rate": 5.450156686711274e-06,
3163
+ "loss": 3.1644,
3164
+ "step": 52600
3165
+ },
3166
+ {
3167
+ "epoch": 0.89,
3168
+ "learning_rate": 5.36546116710426e-06,
3169
+ "loss": 3.1777,
3170
+ "step": 52700
3171
+ },
3172
+ {
3173
+ "epoch": 0.89,
3174
+ "learning_rate": 5.280765647497247e-06,
3175
+ "loss": 3.1678,
3176
+ "step": 52800
3177
+ },
3178
+ {
3179
+ "epoch": 0.9,
3180
+ "learning_rate": 5.196070127890235e-06,
3181
+ "loss": 3.1648,
3182
+ "step": 52900
3183
+ },
3184
+ {
3185
+ "epoch": 0.9,
3186
+ "learning_rate": 5.111374608283222e-06,
3187
+ "loss": 3.1621,
3188
+ "step": 53000
3189
+ },
3190
+ {
3191
+ "epoch": 0.9,
3192
+ "learning_rate": 5.026679088676209e-06,
3193
+ "loss": 3.1644,
3194
+ "step": 53100
3195
+ },
3196
+ {
3197
+ "epoch": 0.9,
3198
+ "learning_rate": 4.941983569069197e-06,
3199
+ "loss": 3.1822,
3200
+ "step": 53200
3201
+ },
3202
+ {
3203
+ "epoch": 0.9,
3204
+ "learning_rate": 4.857288049462184e-06,
3205
+ "loss": 3.173,
3206
+ "step": 53300
3207
+ },
3208
+ {
3209
+ "epoch": 0.9,
3210
+ "learning_rate": 4.7725925298551706e-06,
3211
+ "loss": 3.1617,
3212
+ "step": 53400
3213
+ },
3214
+ {
3215
+ "epoch": 0.91,
3216
+ "learning_rate": 4.687897010248158e-06,
3217
+ "loss": 3.1615,
3218
+ "step": 53500
3219
+ },
3220
+ {
3221
+ "epoch": 0.91,
3222
+ "learning_rate": 4.603201490641145e-06,
3223
+ "loss": 3.1535,
3224
+ "step": 53600
3225
+ },
3226
+ {
3227
+ "epoch": 0.91,
3228
+ "learning_rate": 4.518505971034133e-06,
3229
+ "loss": 3.1688,
3230
+ "step": 53700
3231
+ },
3232
+ {
3233
+ "epoch": 0.91,
3234
+ "learning_rate": 4.43381045142712e-06,
3235
+ "loss": 3.1839,
3236
+ "step": 53800
3237
+ },
3238
+ {
3239
+ "epoch": 0.91,
3240
+ "learning_rate": 4.349114931820107e-06,
3241
+ "loss": 3.1769,
3242
+ "step": 53900
3243
+ },
3244
+ {
3245
+ "epoch": 0.91,
3246
+ "learning_rate": 4.264419412213094e-06,
3247
+ "loss": 3.1649,
3248
+ "step": 54000
3249
+ },
3250
+ {
3251
+ "epoch": 0.92,
3252
+ "learning_rate": 4.1797238926060815e-06,
3253
+ "loss": 3.1644,
3254
+ "step": 54100
3255
+ },
3256
+ {
3257
+ "epoch": 0.92,
3258
+ "learning_rate": 4.095028372999068e-06,
3259
+ "loss": 3.1616,
3260
+ "step": 54200
3261
+ },
3262
+ {
3263
+ "epoch": 0.92,
3264
+ "learning_rate": 4.010332853392056e-06,
3265
+ "loss": 3.1578,
3266
+ "step": 54300
3267
+ },
3268
+ {
3269
+ "epoch": 0.92,
3270
+ "learning_rate": 3.925637333785043e-06,
3271
+ "loss": 3.1621,
3272
+ "step": 54400
3273
+ },
3274
+ {
3275
+ "epoch": 0.92,
3276
+ "learning_rate": 3.84094181417803e-06,
3277
+ "loss": 3.1523,
3278
+ "step": 54500
3279
+ },
3280
+ {
3281
+ "epoch": 0.92,
3282
+ "learning_rate": 3.7562462945710177e-06,
3283
+ "loss": 3.1667,
3284
+ "step": 54600
3285
+ },
3286
+ {
3287
+ "epoch": 0.93,
3288
+ "learning_rate": 3.671550774964005e-06,
3289
+ "loss": 3.1748,
3290
+ "step": 54700
3291
+ },
3292
+ {
3293
+ "epoch": 0.93,
3294
+ "learning_rate": 3.5868552553569917e-06,
3295
+ "loss": 3.1773,
3296
+ "step": 54800
3297
+ },
3298
+ {
3299
+ "epoch": 0.93,
3300
+ "learning_rate": 3.502159735749979e-06,
3301
+ "loss": 3.1418,
3302
+ "step": 54900
3303
+ },
3304
+ {
3305
+ "epoch": 0.93,
3306
+ "learning_rate": 3.417464216142966e-06,
3307
+ "loss": 3.1613,
3308
+ "step": 55000
3309
+ },
3310
+ {
3311
+ "epoch": 0.93,
3312
+ "learning_rate": 3.3327686965359534e-06,
3313
+ "loss": 3.154,
3314
+ "step": 55100
3315
+ },
3316
+ {
3317
+ "epoch": 0.94,
3318
+ "learning_rate": 3.24807317692894e-06,
3319
+ "loss": 3.1776,
3320
+ "step": 55200
3321
+ },
3322
+ {
3323
+ "epoch": 0.94,
3324
+ "learning_rate": 3.1633776573219282e-06,
3325
+ "loss": 3.1513,
3326
+ "step": 55300
3327
+ },
3328
+ {
3329
+ "epoch": 0.94,
3330
+ "learning_rate": 3.078682137714915e-06,
3331
+ "loss": 3.1608,
3332
+ "step": 55400
3333
+ },
3334
+ {
3335
+ "epoch": 0.94,
3336
+ "learning_rate": 2.9939866181079023e-06,
3337
+ "loss": 3.1759,
3338
+ "step": 55500
3339
+ },
3340
+ {
3341
+ "epoch": 0.94,
3342
+ "learning_rate": 2.9092910985008895e-06,
3343
+ "loss": 3.1549,
3344
+ "step": 55600
3345
+ },
3346
+ {
3347
+ "epoch": 0.94,
3348
+ "learning_rate": 2.8245955788938767e-06,
3349
+ "loss": 3.1651,
3350
+ "step": 55700
3351
+ },
3352
+ {
3353
+ "epoch": 0.95,
3354
+ "learning_rate": 2.739900059286864e-06,
3355
+ "loss": 3.167,
3356
+ "step": 55800
3357
+ },
3358
+ {
3359
+ "epoch": 0.95,
3360
+ "learning_rate": 2.655204539679851e-06,
3361
+ "loss": 3.1577,
3362
+ "step": 55900
3363
+ },
3364
+ {
3365
+ "epoch": 0.95,
3366
+ "learning_rate": 2.5705090200728384e-06,
3367
+ "loss": 3.1514,
3368
+ "step": 56000
3369
+ },
3370
+ {
3371
+ "epoch": 0.95,
3372
+ "learning_rate": 2.4858135004658256e-06,
3373
+ "loss": 3.1693,
3374
+ "step": 56100
3375
+ },
3376
+ {
3377
+ "epoch": 0.95,
3378
+ "learning_rate": 2.4011179808588124e-06,
3379
+ "loss": 3.1473,
3380
+ "step": 56200
3381
+ },
3382
+ {
3383
+ "epoch": 0.95,
3384
+ "learning_rate": 2.3164224612518e-06,
3385
+ "loss": 3.1574,
3386
+ "step": 56300
3387
+ },
3388
+ {
3389
+ "epoch": 0.96,
3390
+ "learning_rate": 2.2317269416447873e-06,
3391
+ "loss": 3.1603,
3392
+ "step": 56400
3393
+ },
3394
+ {
3395
+ "epoch": 0.96,
3396
+ "learning_rate": 2.147031422037774e-06,
3397
+ "loss": 3.1687,
3398
+ "step": 56500
3399
+ },
3400
+ {
3401
+ "epoch": 0.96,
3402
+ "learning_rate": 2.0623359024307617e-06,
3403
+ "loss": 3.1608,
3404
+ "step": 56600
3405
+ },
3406
+ {
3407
+ "epoch": 0.96,
3408
+ "learning_rate": 1.977640382823749e-06,
3409
+ "loss": 3.1538,
3410
+ "step": 56700
3411
+ },
3412
+ {
3413
+ "epoch": 0.96,
3414
+ "learning_rate": 1.892944863216736e-06,
3415
+ "loss": 3.1622,
3416
+ "step": 56800
3417
+ },
3418
+ {
3419
+ "epoch": 0.96,
3420
+ "learning_rate": 1.808249343609723e-06,
3421
+ "loss": 3.1582,
3422
+ "step": 56900
3423
+ },
3424
+ {
3425
+ "epoch": 0.97,
3426
+ "learning_rate": 1.7235538240027104e-06,
3427
+ "loss": 3.1573,
3428
+ "step": 57000
3429
+ },
3430
+ {
3431
+ "epoch": 0.97,
3432
+ "learning_rate": 1.6388583043956976e-06,
3433
+ "loss": 3.1431,
3434
+ "step": 57100
3435
+ },
3436
+ {
3437
+ "epoch": 0.97,
3438
+ "learning_rate": 1.5541627847886846e-06,
3439
+ "loss": 3.1634,
3440
+ "step": 57200
3441
+ },
3442
+ {
3443
+ "epoch": 0.97,
3444
+ "learning_rate": 1.469467265181672e-06,
3445
+ "loss": 3.1581,
3446
+ "step": 57300
3447
+ },
3448
+ {
3449
+ "epoch": 0.97,
3450
+ "learning_rate": 1.384771745574659e-06,
3451
+ "loss": 3.1531,
3452
+ "step": 57400
3453
+ },
3454
+ {
3455
+ "epoch": 0.97,
3456
+ "learning_rate": 1.3000762259676463e-06,
3457
+ "loss": 3.1531,
3458
+ "step": 57500
3459
+ },
3460
+ {
3461
+ "epoch": 0.98,
3462
+ "learning_rate": 1.2153807063606335e-06,
3463
+ "loss": 3.1499,
3464
+ "step": 57600
3465
+ },
3466
+ {
3467
+ "epoch": 0.98,
3468
+ "learning_rate": 1.1306851867536208e-06,
3469
+ "loss": 3.1624,
3470
+ "step": 57700
3471
+ },
3472
+ {
3473
+ "epoch": 0.98,
3474
+ "learning_rate": 1.045989667146608e-06,
3475
+ "loss": 3.1609,
3476
+ "step": 57800
3477
+ },
3478
+ {
3479
+ "epoch": 0.98,
3480
+ "learning_rate": 9.612941475395952e-07,
3481
+ "loss": 3.1707,
3482
+ "step": 57900
3483
+ },
3484
+ {
3485
+ "epoch": 0.98,
3486
+ "learning_rate": 8.765986279325823e-07,
3487
+ "loss": 3.1626,
3488
+ "step": 58000
3489
+ },
3490
+ {
3491
+ "epoch": 0.98,
3492
+ "learning_rate": 7.919031083255696e-07,
3493
+ "loss": 3.1698,
3494
+ "step": 58100
3495
+ },
3496
+ {
3497
+ "epoch": 0.99,
3498
+ "learning_rate": 7.072075887185568e-07,
3499
+ "loss": 3.1589,
3500
+ "step": 58200
3501
+ },
3502
+ {
3503
+ "epoch": 0.99,
3504
+ "learning_rate": 6.22512069111544e-07,
3505
+ "loss": 3.1557,
3506
+ "step": 58300
3507
+ },
3508
+ {
3509
+ "epoch": 0.99,
3510
+ "learning_rate": 5.378165495045312e-07,
3511
+ "loss": 3.1603,
3512
+ "step": 58400
3513
+ },
3514
+ {
3515
+ "epoch": 0.99,
3516
+ "learning_rate": 4.5312102989751844e-07,
3517
+ "loss": 3.1588,
3518
+ "step": 58500
3519
+ },
3520
+ {
3521
+ "epoch": 0.99,
3522
+ "learning_rate": 3.6842551029050566e-07,
3523
+ "loss": 3.1622,
3524
+ "step": 58600
3525
+ },
3526
+ {
3527
+ "epoch": 0.99,
3528
+ "learning_rate": 2.837299906834929e-07,
3529
+ "loss": 3.1547,
3530
+ "step": 58700
3531
+ },
3532
+ {
3533
+ "epoch": 1.0,
3534
+ "learning_rate": 1.9903447107648006e-07,
3535
+ "loss": 3.1522,
3536
+ "step": 58800
3537
+ },
3538
+ {
3539
+ "epoch": 1.0,
3540
+ "learning_rate": 1.1433895146946727e-07,
3541
+ "loss": 3.1583,
3542
+ "step": 58900
3543
+ },
3544
+ {
3545
+ "epoch": 1.0,
3546
+ "learning_rate": 2.9643431862454477e-08,
3547
+ "loss": 3.1542,
3548
+ "step": 59000
3549
+ },
3550
+ {
3551
+ "epoch": 1.0,
3552
+ "step": 59035,
3553
+ "total_flos": 2.318685330743415e+18,
3554
+ "train_loss": 3.2513424668918267,
3555
+ "train_runtime": 267734.5376,
3556
+ "train_samples_per_second": 7.056,
3557
+ "train_steps_per_second": 0.22
3558
+ }
3559
+ ],
3560
+ "max_steps": 59035,
3561
+ "num_train_epochs": 1,
3562
+ "total_flos": 2.318685330743415e+18,
3563
+ "trial_name": null,
3564
+ "trial_params": null
3565
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7736f85a2ec4e9aa9b423a901250c13be999d1d90d8a18a402dbb12b11386796
3
+ size 3951