Junfeng commited on
Commit
f019a9e
·
1 Parent(s): 9ae2660

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.41 +/- 1.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c018e3f3b92ca394486d63ce2f71d4897da768dbf768eaba3e5d0f0cbadd29df
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f45b652b280>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f45b6523a80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674550192669238947,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5ZTLPhGjC70IdA4/5ZTLPhGjC70IdA4/5ZTLPhGjC70IdA4/5ZTLPhGjC70IdA4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxP5Av/iJ17+XaEM/TlquvuacQj5WSCM/vTCIP7hE0j/Qhhg/I8mvv8g5Vb9H87O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADllMs+EaMLvQh0Dj9d9bk8Y5fJu3g+ajzllMs+EaMLvQh0Dj9d9bk8Y5fJu3g+ajzllMs+EaMLvQh0Dj9d9bk8Y5fJu3g+ajzllMs+EaMLvQh0Dj9d9bk8Y5fJu3g+ajyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.39762035 -0.03409106 0.556458 ]\n [ 0.39762035 -0.03409106 0.556458 ]\n [ 0.39762035 -0.03409106 0.556458 ]\n [ 0.39762035 -0.03409106 0.556458 ]]",
60
+ "desired_goal": "[[-0.7538874 -1.683898 0.76331466]\n [-0.34053272 0.19005165 0.6378225 ]\n [ 1.0639874 1.6427221 0.5958071 ]\n [-1.3733257 -0.8329129 -1.4058617 ]]",
61
+ "observation": "[[ 0.39762035 -0.03409106 0.556458 0.02270001 -0.00615208 0.01429712]\n [ 0.39762035 -0.03409106 0.556458 0.02270001 -0.00615208 0.01429712]\n [ 0.39762035 -0.03409106 0.556458 0.02270001 -0.00615208 0.01429712]\n [ 0.39762035 -0.03409106 0.556458 0.02270001 -0.00615208 0.01429712]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAz6nvajZc73hBVg++8SaPLyNED56xYg+Y1TXvPpP5T3ulIY+nHjCvdNngbvkpCs9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.08166125 -0.05953375 0.21095993]\n [ 0.01889276 0.14116567 0.26713163]\n [-0.02628536 0.11196895 0.262855 ]\n [-0.09495661 -0.00394914 0.0419053 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRGlv8IVJ87+UhpRSlIwBbJRLMowBdJRHQKP8TjLjght1fZQoaAZoCWgPQwg/c9anHNMIwJSGlFKUaBVLMmgWR0Cj/BKsdT5wdX2UKGgGaAloD0MIje4gdqawA8CUhpRSlGgVSzJoFkdAo/vYUahpQHV9lChoBmgJaA9DCFvuzATDGQ3AlIaUUpRoFUsyaBZHQKP7nNSqEOB1fZQoaAZoCWgPQwh55XrbTAX2v5SGlFKUaBVLMmgWR0Cj/UbRWtEHdX2UKGgGaAloD0MIdH0fDhKi+r+UhpRSlGgVSzJoFkdAo/0LW3BpH3V9lChoBmgJaA9DCMOf4c0aPAXAlIaUUpRoFUsyaBZHQKP80PIXCTF1fZQoaAZoCWgPQwgCS65i8Zvuv5SGlFKUaBVLMmgWR0Cj/JVTzd1udX2UKGgGaAloD0MIqFKzB1pB/L+UhpRSlGgVSzJoFkdAo/5DBGhEjXV9lChoBmgJaA9DCOSECaNZGfa/lIaUUpRoFUsyaBZHQKP+CA2AG0N1fZQoaAZoCWgPQwgNxR1v8vsHwJSGlFKUaBVLMmgWR0Cj/c3Jgb6ydX2UKGgGaAloD0MIg2itaHOc/b+UhpRSlGgVSzJoFkdAo/2SVv/BFnV9lChoBmgJaA9DCPaYSGk2j/S/lIaUUpRoFUsyaBZHQKP/TE2HclB1fZQoaAZoCWgPQwi2heelYkMMwJSGlFKUaBVLMmgWR0Cj/xDbSJCTdX2UKGgGaAloD0MI5sx2hT5Y+L+UhpRSlGgVSzJoFkdAo/7WgvlEJHV9lChoBmgJaA9DCK3fTEwX4va/lIaUUpRoFUsyaBZHQKP+mxk/bCd1fZQoaAZoCWgPQwgHI/YJoLgQwJSGlFKUaBVLMmgWR0CkAEZqM3qBdX2UKGgGaAloD0MIFD5bBwfbCcCUhpRSlGgVSzJoFkdApAAKtmtheHV9lChoBmgJaA9DCBPwayQJwva/lIaUUpRoFUsyaBZHQKP/0DPGACp1fZQoaAZoCWgPQwjdtBmnIcoAwJSGlFKUaBVLMmgWR0Cj/5SkCV8kdX2UKGgGaAloD0MIqB3+mqyRDMCUhpRSlGgVSzJoFkdApAFIdCE6DHV9lChoBmgJaA9DCChDVUylvw/AlIaUUpRoFUsyaBZHQKQBDQnhKlJ1fZQoaAZoCWgPQwhJnYAmwsb7v5SGlFKUaBVLMmgWR0CkANKtYB/7dX2UKGgGaAloD0MIm6p7ZHPVDMCUhpRSlGgVSzJoFkdApACXGVAzHnV9lChoBmgJaA9DCMbBpWPOM/C/lIaUUpRoFUsyaBZHQKQCShysCDF1fZQoaAZoCWgPQwjjxi3m54YAwJSGlFKUaBVLMmgWR0CkAg6NuLrHdX2UKGgGaAloD0MIDjLJyFnIEMCUhpRSlGgVSzJoFkdApAHUNjLB9HV9lChoBmgJaA9DCK4SLA5nvvq/lIaUUpRoFUsyaBZHQKQBmMSbpeN1fZQoaAZoCWgPQwhV+3Q8ZuATwJSGlFKUaBVLMmgWR0CkA1i6g/TtdX2UKGgGaAloD0MIUg5mE2BY8L+UhpRSlGgVSzJoFkdApAMdLxqfvnV9lChoBmgJaA9DCEm+EkiJXfi/lIaUUpRoFUsyaBZHQKQC4u1WsBB1fZQoaAZoCWgPQwiDpiVWRiP0v5SGlFKUaBVLMmgWR0CkAqdQO4G2dX2UKGgGaAloD0MIz2kWaHeI/b+UhpRSlGgVSzJoFkdApARVjgAIY3V9lChoBmgJaA9DCDNQGf8+4/u/lIaUUpRoFUsyaBZHQKQEGez2OAB1fZQoaAZoCWgPQwgMO4xJf48CwJSGlFKUaBVLMmgWR0CkA9+bVjI8dX2UKGgGaAloD0MIjPUNTG70DcCUhpRSlGgVSzJoFkdApAOkGs3hoHV9lChoBmgJaA9DCM6MfjSccgPAlIaUUpRoFUsyaBZHQKQFVPWxyGV1fZQoaAZoCWgPQwhOJ9nqckr9v5SGlFKUaBVLMmgWR0CkBRl1r6+GdX2UKGgGaAloD0MIZi5weax5EcCUhpRSlGgVSzJoFkdApATfAsTWXnV9lChoBmgJaA9DCNUGJ6JfWwvAlIaUUpRoFUsyaBZHQKQEo5BC2MN1fZQoaAZoCWgPQwh2+daH9QYRwJSGlFKUaBVLMmgWR0CkBk6H0se5dX2UKGgGaAloD0MIhJz3/3FC87+UhpRSlGgVSzJoFkdApAYTLdN34nV9lChoBmgJaA9DCE7RkVz+YwDAlIaUUpRoFUsyaBZHQKQF2LLIPsl1fZQoaAZoCWgPQwgcmUf+YKD4v5SGlFKUaBVLMmgWR0CkBZ052hZhdX2UKGgGaAloD0MIN23GaYhKA8CUhpRSlGgVSzJoFkdApAdIvDgqE3V9lChoBmgJaA9DCDJVMCqp8wvAlIaUUpRoFUsyaBZHQKQHDTy8SPF1fZQoaAZoCWgPQwj9iF+xhssQwJSGlFKUaBVLMmgWR0CkBtLmITGpdX2UKGgGaAloD0MINxsrMc/KCsCUhpRSlGgVSzJoFkdApAaYHxBmgHV9lChoBmgJaA9DCKvRqwFKw/+/lIaUUpRoFUsyaBZHQKQIRmHxjKB1fZQoaAZoCWgPQwiZt+o6VBMEwJSGlFKUaBVLMmgWR0CkCArZJ04jdX2UKGgGaAloD0MIz6J3KuDeAsCUhpRSlGgVSzJoFkdApAfQe9zwMHV9lChoBmgJaA9DCD27fOvD+gDAlIaUUpRoFUsyaBZHQKQHlOXVsk91fZQoaAZoCWgPQwjTodPzbmwCwJSGlFKUaBVLMmgWR0CkCUJP69CedX2UKGgGaAloD0MIrDlAMEfPBMCUhpRSlGgVSzJoFkdApAkGl9BrvnV9lChoBmgJaA9DCAtET8qkxve/lIaUUpRoFUsyaBZHQKQIzAnDziF1fZQoaAZoCWgPQwgl58Qe2sf9v5SGlFKUaBVLMmgWR0CkCJB24d6tdX2UKGgGaAloD0MI5nRZTGxeB8CUhpRSlGgVSzJoFkdApApDgsK9f3V9lChoBmgJaA9DCPYINUOqaPG/lIaUUpRoFUsyaBZHQKQKCBQvYe11fZQoaAZoCWgPQwga4IJsWf7/v5SGlFKUaBVLMmgWR0CkCc26bvw3dX2UKGgGaAloD0MIsHCS5o9p9L+UhpRSlGgVSzJoFkdApAmSM5wOv3V9lChoBmgJaA9DCAhVavZASwjAlIaUUpRoFUsyaBZHQKQLR80k4WF1fZQoaAZoCWgPQwiVnBN7aN/6v5SGlFKUaBVLMmgWR0CkCwxoRIz4dX2UKGgGaAloD0MIlphnJa249r+UhpRSlGgVSzJoFkdApArSGJvYOHV9lChoBmgJaA9DCNMtO8Q/bPG/lIaUUpRoFUsyaBZHQKQKlpeu3c51fZQoaAZoCWgPQwjCE3r9Sfz8v5SGlFKUaBVLMmgWR0CkDFH0kGA1dX2UKGgGaAloD0MIlWQdjq4S+7+UhpRSlGgVSzJoFkdApAwWhwl0HXV9lChoBmgJaA9DCIDY0qOp3vG/lIaUUpRoFUsyaBZHQKQL3FCLMs91fZQoaAZoCWgPQwg1KQXdXpL8v5SGlFKUaBVLMmgWR0CkC6DxTbWVdX2UKGgGaAloD0MIMGZLVkU4BsCUhpRSlGgVSzJoFkdApA1Unw5NoXV9lChoBmgJaA9DCDFETl/PNwTAlIaUUpRoFUsyaBZHQKQNGSGrS3N1fZQoaAZoCWgPQwgw8rImFvj6v5SGlFKUaBVLMmgWR0CkDN7FKkEcdX2UKGgGaAloD0MIBAKdSZsq/L+UhpRSlGgVSzJoFkdApAyjiVB2OnV9lChoBmgJaA9DCMTPfw9eO/i/lIaUUpRoFUsyaBZHQKQOXD1Gsmx1fZQoaAZoCWgPQwjXa3pQUOoKwJSGlFKUaBVLMmgWR0CkDiDTrmhedX2UKGgGaAloD0MI2Lyqs1rQEMCUhpRSlGgVSzJoFkdApA3mby6MBXV9lChoBmgJaA9DCI8aE2IuiQHAlIaUUpRoFUsyaBZHQKQNqxyGSIR1fZQoaAZoCWgPQwiKd4AnLbwEwJSGlFKUaBVLMmgWR0CkD2MSkCV9dX2UKGgGaAloD0MIjpCBPLs8BcCUhpRSlGgVSzJoFkdApA8nub7TD3V9lChoBmgJaA9DCATj4NIx5wHAlIaUUpRoFUsyaBZHQKQO7VlwtJ51fZQoaAZoCWgPQwiuYYbGEyEAwJSGlFKUaBVLMmgWR0CkDrH9m6GydX2UKGgGaAloD0MIdlJflnaqAsCUhpRSlGgVSzJoFkdApBBp7w8W9HV9lChoBmgJaA9DCGR3gZICCwHAlIaUUpRoFUsyaBZHQKQQLngYP5J1fZQoaAZoCWgPQwiB0Hr4MvEHwJSGlFKUaBVLMmgWR0CkD/QoLG70dX2UKGgGaAloD0MIYabtX1np+r+UhpRSlGgVSzJoFkdApA+4zWPLgXV9lChoBmgJaA9DCLsO1ZRkXQzAlIaUUpRoFUsyaBZHQKQRZ3AVO9F1fZQoaAZoCWgPQwhHIF7XL9gQwJSGlFKUaBVLMmgWR0CkESvRZ2ZBdX2UKGgGaAloD0MIryZPWU1X97+UhpRSlGgVSzJoFkdApBDxaouPFXV9lChoBmgJaA9DCHDP86eN6v2/lIaUUpRoFUsyaBZHQKQQtdxAB1d1fZQoaAZoCWgPQwiWmGclrVgMwJSGlFKUaBVLMmgWR0CkEnB68g6mdX2UKGgGaAloD0MInNuEe2X+AsCUhpRSlGgVSzJoFkdApBI1Brvb5HV9lChoBmgJaA9DCECmtWlsjwXAlIaUUpRoFUsyaBZHQKQR+pRXOnl1fZQoaAZoCWgPQwi8sDVbeSkHwJSGlFKUaBVLMmgWR0CkEb7ulXRxdX2UKGgGaAloD0MIlBXD1QFwA8CUhpRSlGgVSzJoFkdApBNviT+vQnV9lChoBmgJaA9DCLmOccXFcQfAlIaUUpRoFUsyaBZHQKQTNB5X2dx1fZQoaAZoCWgPQwgteTwtP3AMwJSGlFKUaBVLMmgWR0CkEvnMdLg5dX2UKGgGaAloD0MIHomXp3PF8r+UhpRSlGgVSzJoFkdApBK+TcIqsnV9lChoBmgJaA9DCPp8lBEXQPq/lIaUUpRoFUsyaBZHQKQUe3yZrpJ1fZQoaAZoCWgPQwjhtyHGa14NwJSGlFKUaBVLMmgWR0CkFEAAhje9dX2UKGgGaAloD0MIRUqzeRwmBsCUhpRSlGgVSzJoFkdApBQFugpSaXV9lChoBmgJaA9DCCyeeqTB7QDAlIaUUpRoFUsyaBZHQKQTylhPTG51ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a34a14bee641cc3344d3fbd6d39cace2f169e3ca52c1113d3816a334651b7ba0
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71ea9b9624f3cbea468993c5e699958619fcec97a250cc23773aeed6457c23c3
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f45b652b280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45b6523a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674550192669238947, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5ZTLPhGjC70IdA4/5ZTLPhGjC70IdA4/5ZTLPhGjC70IdA4/5ZTLPhGjC70IdA4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxP5Av/iJ17+XaEM/TlquvuacQj5WSCM/vTCIP7hE0j/Qhhg/I8mvv8g5Vb9H87O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADllMs+EaMLvQh0Dj9d9bk8Y5fJu3g+ajzllMs+EaMLvQh0Dj9d9bk8Y5fJu3g+ajzllMs+EaMLvQh0Dj9d9bk8Y5fJu3g+ajzllMs+EaMLvQh0Dj9d9bk8Y5fJu3g+ajyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.39762035 -0.03409106 0.556458 ]\n [ 0.39762035 -0.03409106 0.556458 ]\n [ 0.39762035 -0.03409106 0.556458 ]\n [ 0.39762035 -0.03409106 0.556458 ]]", "desired_goal": "[[-0.7538874 -1.683898 0.76331466]\n [-0.34053272 0.19005165 0.6378225 ]\n [ 1.0639874 1.6427221 0.5958071 ]\n [-1.3733257 -0.8329129 -1.4058617 ]]", "observation": "[[ 0.39762035 -0.03409106 0.556458 0.02270001 -0.00615208 0.01429712]\n [ 0.39762035 -0.03409106 0.556458 0.02270001 -0.00615208 0.01429712]\n [ 0.39762035 -0.03409106 0.556458 0.02270001 -0.00615208 0.01429712]\n [ 0.39762035 -0.03409106 0.556458 0.02270001 -0.00615208 0.01429712]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAz6nvajZc73hBVg++8SaPLyNED56xYg+Y1TXvPpP5T3ulIY+nHjCvdNngbvkpCs9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08166125 -0.05953375 0.21095993]\n [ 0.01889276 0.14116567 0.26713163]\n [-0.02628536 0.11196895 0.262855 ]\n [-0.09495661 -0.00394914 0.0419053 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRGlv8IVJ87+UhpRSlIwBbJRLMowBdJRHQKP8TjLjght1fZQoaAZoCWgPQwg/c9anHNMIwJSGlFKUaBVLMmgWR0Cj/BKsdT5wdX2UKGgGaAloD0MIje4gdqawA8CUhpRSlGgVSzJoFkdAo/vYUahpQHV9lChoBmgJaA9DCFvuzATDGQ3AlIaUUpRoFUsyaBZHQKP7nNSqEOB1fZQoaAZoCWgPQwh55XrbTAX2v5SGlFKUaBVLMmgWR0Cj/UbRWtEHdX2UKGgGaAloD0MIdH0fDhKi+r+UhpRSlGgVSzJoFkdAo/0LW3BpH3V9lChoBmgJaA9DCMOf4c0aPAXAlIaUUpRoFUsyaBZHQKP80PIXCTF1fZQoaAZoCWgPQwgCS65i8Zvuv5SGlFKUaBVLMmgWR0Cj/JVTzd1udX2UKGgGaAloD0MIqFKzB1pB/L+UhpRSlGgVSzJoFkdAo/5DBGhEjXV9lChoBmgJaA9DCOSECaNZGfa/lIaUUpRoFUsyaBZHQKP+CA2AG0N1fZQoaAZoCWgPQwgNxR1v8vsHwJSGlFKUaBVLMmgWR0Cj/c3Jgb6ydX2UKGgGaAloD0MIg2itaHOc/b+UhpRSlGgVSzJoFkdAo/2SVv/BFnV9lChoBmgJaA9DCPaYSGk2j/S/lIaUUpRoFUsyaBZHQKP/TE2HclB1fZQoaAZoCWgPQwi2heelYkMMwJSGlFKUaBVLMmgWR0Cj/xDbSJCTdX2UKGgGaAloD0MI5sx2hT5Y+L+UhpRSlGgVSzJoFkdAo/7WgvlEJHV9lChoBmgJaA9DCK3fTEwX4va/lIaUUpRoFUsyaBZHQKP+mxk/bCd1fZQoaAZoCWgPQwgHI/YJoLgQwJSGlFKUaBVLMmgWR0CkAEZqM3qBdX2UKGgGaAloD0MIFD5bBwfbCcCUhpRSlGgVSzJoFkdApAAKtmtheHV9lChoBmgJaA9DCBPwayQJwva/lIaUUpRoFUsyaBZHQKP/0DPGACp1fZQoaAZoCWgPQwjdtBmnIcoAwJSGlFKUaBVLMmgWR0Cj/5SkCV8kdX2UKGgGaAloD0MIqB3+mqyRDMCUhpRSlGgVSzJoFkdApAFIdCE6DHV9lChoBmgJaA9DCChDVUylvw/AlIaUUpRoFUsyaBZHQKQBDQnhKlJ1fZQoaAZoCWgPQwhJnYAmwsb7v5SGlFKUaBVLMmgWR0CkANKtYB/7dX2UKGgGaAloD0MIm6p7ZHPVDMCUhpRSlGgVSzJoFkdApACXGVAzHnV9lChoBmgJaA9DCMbBpWPOM/C/lIaUUpRoFUsyaBZHQKQCShysCDF1fZQoaAZoCWgPQwjjxi3m54YAwJSGlFKUaBVLMmgWR0CkAg6NuLrHdX2UKGgGaAloD0MIDjLJyFnIEMCUhpRSlGgVSzJoFkdApAHUNjLB9HV9lChoBmgJaA9DCK4SLA5nvvq/lIaUUpRoFUsyaBZHQKQBmMSbpeN1fZQoaAZoCWgPQwhV+3Q8ZuATwJSGlFKUaBVLMmgWR0CkA1i6g/TtdX2UKGgGaAloD0MIUg5mE2BY8L+UhpRSlGgVSzJoFkdApAMdLxqfvnV9lChoBmgJaA9DCEm+EkiJXfi/lIaUUpRoFUsyaBZHQKQC4u1WsBB1fZQoaAZoCWgPQwiDpiVWRiP0v5SGlFKUaBVLMmgWR0CkAqdQO4G2dX2UKGgGaAloD0MIz2kWaHeI/b+UhpRSlGgVSzJoFkdApARVjgAIY3V9lChoBmgJaA9DCDNQGf8+4/u/lIaUUpRoFUsyaBZHQKQEGez2OAB1fZQoaAZoCWgPQwgMO4xJf48CwJSGlFKUaBVLMmgWR0CkA9+bVjI8dX2UKGgGaAloD0MIjPUNTG70DcCUhpRSlGgVSzJoFkdApAOkGs3hoHV9lChoBmgJaA9DCM6MfjSccgPAlIaUUpRoFUsyaBZHQKQFVPWxyGV1fZQoaAZoCWgPQwhOJ9nqckr9v5SGlFKUaBVLMmgWR0CkBRl1r6+GdX2UKGgGaAloD0MIZi5weax5EcCUhpRSlGgVSzJoFkdApATfAsTWXnV9lChoBmgJaA9DCNUGJ6JfWwvAlIaUUpRoFUsyaBZHQKQEo5BC2MN1fZQoaAZoCWgPQwh2+daH9QYRwJSGlFKUaBVLMmgWR0CkBk6H0se5dX2UKGgGaAloD0MIhJz3/3FC87+UhpRSlGgVSzJoFkdApAYTLdN34nV9lChoBmgJaA9DCE7RkVz+YwDAlIaUUpRoFUsyaBZHQKQF2LLIPsl1fZQoaAZoCWgPQwgcmUf+YKD4v5SGlFKUaBVLMmgWR0CkBZ052hZhdX2UKGgGaAloD0MIN23GaYhKA8CUhpRSlGgVSzJoFkdApAdIvDgqE3V9lChoBmgJaA9DCDJVMCqp8wvAlIaUUpRoFUsyaBZHQKQHDTy8SPF1fZQoaAZoCWgPQwj9iF+xhssQwJSGlFKUaBVLMmgWR0CkBtLmITGpdX2UKGgGaAloD0MINxsrMc/KCsCUhpRSlGgVSzJoFkdApAaYHxBmgHV9lChoBmgJaA9DCKvRqwFKw/+/lIaUUpRoFUsyaBZHQKQIRmHxjKB1fZQoaAZoCWgPQwiZt+o6VBMEwJSGlFKUaBVLMmgWR0CkCArZJ04jdX2UKGgGaAloD0MIz6J3KuDeAsCUhpRSlGgVSzJoFkdApAfQe9zwMHV9lChoBmgJaA9DCD27fOvD+gDAlIaUUpRoFUsyaBZHQKQHlOXVsk91fZQoaAZoCWgPQwjTodPzbmwCwJSGlFKUaBVLMmgWR0CkCUJP69CedX2UKGgGaAloD0MIrDlAMEfPBMCUhpRSlGgVSzJoFkdApAkGl9BrvnV9lChoBmgJaA9DCAtET8qkxve/lIaUUpRoFUsyaBZHQKQIzAnDziF1fZQoaAZoCWgPQwgl58Qe2sf9v5SGlFKUaBVLMmgWR0CkCJB24d6tdX2UKGgGaAloD0MI5nRZTGxeB8CUhpRSlGgVSzJoFkdApApDgsK9f3V9lChoBmgJaA9DCPYINUOqaPG/lIaUUpRoFUsyaBZHQKQKCBQvYe11fZQoaAZoCWgPQwga4IJsWf7/v5SGlFKUaBVLMmgWR0CkCc26bvw3dX2UKGgGaAloD0MIsHCS5o9p9L+UhpRSlGgVSzJoFkdApAmSM5wOv3V9lChoBmgJaA9DCAhVavZASwjAlIaUUpRoFUsyaBZHQKQLR80k4WF1fZQoaAZoCWgPQwiVnBN7aN/6v5SGlFKUaBVLMmgWR0CkCwxoRIz4dX2UKGgGaAloD0MIlphnJa249r+UhpRSlGgVSzJoFkdApArSGJvYOHV9lChoBmgJaA9DCNMtO8Q/bPG/lIaUUpRoFUsyaBZHQKQKlpeu3c51fZQoaAZoCWgPQwjCE3r9Sfz8v5SGlFKUaBVLMmgWR0CkDFH0kGA1dX2UKGgGaAloD0MIlWQdjq4S+7+UhpRSlGgVSzJoFkdApAwWhwl0HXV9lChoBmgJaA9DCIDY0qOp3vG/lIaUUpRoFUsyaBZHQKQL3FCLMs91fZQoaAZoCWgPQwg1KQXdXpL8v5SGlFKUaBVLMmgWR0CkC6DxTbWVdX2UKGgGaAloD0MIMGZLVkU4BsCUhpRSlGgVSzJoFkdApA1Unw5NoXV9lChoBmgJaA9DCDFETl/PNwTAlIaUUpRoFUsyaBZHQKQNGSGrS3N1fZQoaAZoCWgPQwgw8rImFvj6v5SGlFKUaBVLMmgWR0CkDN7FKkEcdX2UKGgGaAloD0MIBAKdSZsq/L+UhpRSlGgVSzJoFkdApAyjiVB2OnV9lChoBmgJaA9DCMTPfw9eO/i/lIaUUpRoFUsyaBZHQKQOXD1Gsmx1fZQoaAZoCWgPQwjXa3pQUOoKwJSGlFKUaBVLMmgWR0CkDiDTrmhedX2UKGgGaAloD0MI2Lyqs1rQEMCUhpRSlGgVSzJoFkdApA3mby6MBXV9lChoBmgJaA9DCI8aE2IuiQHAlIaUUpRoFUsyaBZHQKQNqxyGSIR1fZQoaAZoCWgPQwiKd4AnLbwEwJSGlFKUaBVLMmgWR0CkD2MSkCV9dX2UKGgGaAloD0MIjpCBPLs8BcCUhpRSlGgVSzJoFkdApA8nub7TD3V9lChoBmgJaA9DCATj4NIx5wHAlIaUUpRoFUsyaBZHQKQO7VlwtJ51fZQoaAZoCWgPQwiuYYbGEyEAwJSGlFKUaBVLMmgWR0CkDrH9m6GydX2UKGgGaAloD0MIdlJflnaqAsCUhpRSlGgVSzJoFkdApBBp7w8W9HV9lChoBmgJaA9DCGR3gZICCwHAlIaUUpRoFUsyaBZHQKQQLngYP5J1fZQoaAZoCWgPQwiB0Hr4MvEHwJSGlFKUaBVLMmgWR0CkD/QoLG70dX2UKGgGaAloD0MIYabtX1np+r+UhpRSlGgVSzJoFkdApA+4zWPLgXV9lChoBmgJaA9DCLsO1ZRkXQzAlIaUUpRoFUsyaBZHQKQRZ3AVO9F1fZQoaAZoCWgPQwhHIF7XL9gQwJSGlFKUaBVLMmgWR0CkESvRZ2ZBdX2UKGgGaAloD0MIryZPWU1X97+UhpRSlGgVSzJoFkdApBDxaouPFXV9lChoBmgJaA9DCHDP86eN6v2/lIaUUpRoFUsyaBZHQKQQtdxAB1d1fZQoaAZoCWgPQwiWmGclrVgMwJSGlFKUaBVLMmgWR0CkEnB68g6mdX2UKGgGaAloD0MInNuEe2X+AsCUhpRSlGgVSzJoFkdApBI1Brvb5HV9lChoBmgJaA9DCECmtWlsjwXAlIaUUpRoFUsyaBZHQKQR+pRXOnl1fZQoaAZoCWgPQwi8sDVbeSkHwJSGlFKUaBVLMmgWR0CkEb7ulXRxdX2UKGgGaAloD0MIlBXD1QFwA8CUhpRSlGgVSzJoFkdApBNviT+vQnV9lChoBmgJaA9DCLmOccXFcQfAlIaUUpRoFUsyaBZHQKQTNB5X2dx1fZQoaAZoCWgPQwgteTwtP3AMwJSGlFKUaBVLMmgWR0CkEvnMdLg5dX2UKGgGaAloD0MIHomXp3PF8r+UhpRSlGgVSzJoFkdApBK+TcIqsnV9lChoBmgJaA9DCPp8lBEXQPq/lIaUUpRoFUsyaBZHQKQUe3yZrpJ1fZQoaAZoCWgPQwjhtyHGa14NwJSGlFKUaBVLMmgWR0CkFEAAhje9dX2UKGgGaAloD0MIRUqzeRwmBsCUhpRSlGgVSzJoFkdApBQFugpSaXV9lChoBmgJaA9DCCyeeqTB7QDAlIaUUpRoFUsyaBZHQKQTylhPTG51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (703 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.412626568891574, "std_reward": 1.2814516134144955, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T09:32:46.167935"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88127482789a998151ab0acc497692921e4f9e20bc7f13ad508f5aa94f7d5f99
3
+ size 3056