File size: 13,460 Bytes
d792142
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78ae9a2aa3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78ae9a2aa440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78ae9a2aa4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78ae9a2aa560>", "_build": "<function ActorCriticPolicy._build at 0x78ae9a2aa5f0>", "forward": "<function ActorCriticPolicy.forward at 0x78ae9a2aa680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78ae9a2aa710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78ae9a2aa7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x78ae9a2aa830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78ae9a2aa8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78ae9a2aa950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78ae9a2aa9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78ae9a29a080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 102400, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693907400144149837, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAABImD7rb28/4HidvKUoQr5RVpi97EsEvgAAAAAAAAAAgMHxPVzLCroKaCA850w0OdJVxrpOyBk6AACAPwAAgD/N3o28SNhJPygAv716lje+Po36vcY3or0AAAAAAAAAAD33m76uauW8CMVAO9aEvDlXzDQ+mEdfugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF2JI+4b0e6MAWyUTegDjAF0lEdAkFpks8PnS3V9lChoBkdAVsNfMOf/WGgHTegDaAhHQJB7A3Mpw0h1fZQoaAZHQFk1TfBN21VoB03oA2gIR0CQf2kTHsC1dX2UKGgGR0Bg23RLK3d9aAdN6ANoCEdAkH94SteUp3V9lChoBkdAYobfoA4n4WgHTegDaAhHQJB/egrYoRZ1fZQoaAZHQDy3ZqVQhwFoB0v0aAhHQJCKNHI6r/91fZQoaAZHQGHVcHWz4UNoB03oA2gIR0CQmshRZU1idX2UKGgGR0Bb+3j2i+L4aAdN6ANoCEdAkKEpH/cWTHV9lChoBkdAXfFj8UEgXGgHTegDaAhHQJChQZVGTcJ1fZQoaAZHQCFLn3cpLEloB0vwaAhHQJCiIQYk3S91fZQoaAZHQF2HinpB5X5oB03oA2gIR0CQrFk30f5ldX2UKGgGR0Aj2qdYnv2HaAdNGQFoCEdAkKzhFRYRunV9lChoBkdAVkIWCVbA12gHTegDaAhHQJC9liPQv6F1fZQoaAZHQFwWYHgP3BZoB03oA2gIR0CQvqsEaESNdX2UKGgGR0A4/Ok+HJtBaAdL9mgIR0CQxv3LV4HHdX2UKGgGR0BfVsdPtUn5aAdN6ANoCEdAkMcDnV5KOHV9lChoBkdAWpvUTcqOLmgHTegDaAhHQJDHf2USqVB1fZQoaAZHwCiOgJ1JUYNoB0vfaAhHQJDKhAgPmPp1fZQoaAZHQF/UuoxYaHdoB03oA2gIR0CQ2GyvLX+VdX2UKGgGR0BajCMUAT7EaAdN6ANoCEdAkOWQIt16mnV9lChoBkdAXFIxcmjTKGgHTegDaAhHQJDlmpaRp111fZQoaAZHwDJbMvAXVLBoB0v0aAhHQJDmsKzAvct1fZQoaAZHQFUG7AtWdVhoB03oA2gIR0CQ63JOFg2IdX2UKGgGR0BZu9ic5Ke1aAdN6ANoCEdAkQNTnq3VkXV9lChoBkdAYs6zSCvovGgHTegDaAhHQJEDXMNc4YJ1fZQoaAZHQGP1AwXZXdVoB03oA2gIR0CRBEfBN21VdX2UKGgGR0BhicFt8/liaAdN6ANoCEdAkQfk/0NBnnV9lChoBkfARa5w++ueSWgHTXUBaAhHQJEQ6d/axot1fZQoaAZHQGGgClrM1TBoB03oA2gIR0CRHkZvUBn0dX2UKGgGR0BbuDR6Ww/xaAdN6ANoCEdAkR5SKFZgX3V9lChoBkdAWw1pM6BAfWgHTegDaAhHQJEmNX6qKgt1fZQoaAZHwCksWsRxtHhoB02qAWgIR0CRLhUornTzdX2UKGgGR0Bh9+gWac7RaAdN6ANoCEdAkTLj5CWu5nV9lChoBkfAMGnXd0q6OGgHTccBaAhHQJE4YTAWSEF1fZQoaAZHQFDiXRw6ySpoB03oA2gIR0CROxbSJCSidX2UKGgGR0BVitBF/hESaAdN6ANoCEdAkTv7RrrPdHV9lChoBkc/323BpHqeLGgHTVcBaAhHQJFDIlUp/gB1fZQoaAZHQF9dmmce8wpoB03oA2gIR0CRTCU1yeZodX2UKGgGR0BBaly7wrlOaAdL4mgIR0CRUqgoPTXrdX2UKGgGR0Bhh4M4LkS3aAdN6ANoCEdAkVeGszVMEnV9lChoBkdAYnm8hcJMQGgHTegDaAhHQJFYobMotth1fZQoaAZHQFuECCBf8dhoB03oA2gIR0CRY7y8jAzpdX2UKGgGR8AASS5iExqPaAdN1QFoCEdAkWupmAbyY3V9lChoBkdAY3VK7qY7aWgHTSYCaAhHQJFsm/fwZwZ1fZQoaAZHQFR95bQkX1toB03oA2gIR0CRdB8R+SbIdX2UKGgGR8BSfyZF5OafaAdN6ANoCEdAkYGc8s+V1XV9lChoBkdAX2ZhfBvaUWgHTegDaAhHQJGJo6uGKyh1fZQoaAZHQEiJxcVxjrloB03oA2gIR0CRipfDUExJdX2UKGgGR0Ba9FYZEUj+aAdN6ANoCEdAkZO9cfNiY3V9lChoBkdAV5eshgVoH2gHTegDaAhHQJGm86GQCCB1fZQoaAZHQF0D20Re1KJoB03oA2gIR0CRr2eRxLkCdX2UKGgGR0BgBpBNVR1paAdN6ANoCEdAkbBWJ79hqnV9lChoBkdAYRei9qUNa2gHTegDaAhHQJG3+DaoMrp1fZQoaAZHQFoVqIJqqOtoB03oA2gIR0CRxepd8iOedX2UKGgGR0BcIckpqh11aAdN6ANoCEdAkc0mUKRdQnV9lChoBkfASMFUQ04zamgHTSoBaAhHQJHNWU5dWyV1fZQoaAZHQGh0Z2ZAprloB02sAmgIR0CRzd4d6sySdX2UKGgGR0BT4nwgDA8CaAdN6ANoCEdAkc3/9pAUtnV9lChoBkdAFNfxtpEhJWgHTRIBaAhHQJHR85WBBiV1fZQoaAZHQC0/OjZcs19oB01lAWgIR0CR1TcIZ62OdX2UKGgGR0AQsLE1l5GCaAdNOQFoCEdAkeXAQQL/j3V9lChoBkfAL8ERjBl+VmgHS/poCEdAketHj+717XV9lChoBkdAYohC3w1BMWgHTegDaAhHQJHsViXpnpV1fZQoaAZHQFjAhpxm03RoB03oA2gIR0CR7MA2hqTKdX2UKGgGR0BgtKoCMgloaAdN6ANoCEdAkfA5R0lqrXV9lChoBkdAYFlaQmu1W2gHTegDaAhHQJIFH93r2QJ1fZQoaAZHQFiVMzdk8RtoB03oA2gIR0CSBkM2m52AdX2UKGgGR0Be+HsTnJT3aAdN6ANoCEdAkgaSS/0ulHV9lChoBkdAY4FJvo/zKGgHTegDaAhHQJIKK43FUAF1fZQoaAZHwEyQVKPGQ0ZoB01eAWgIR0CSFY1uR9w4dX2UKGgGR0BWBwPuogmraAdN6ANoCEdAkifswxnFpHV9lChoBkdAY3JFn7Hhj2gHTegDaAhHQJIpLlDF6zF1fZQoaAZHQDbfdLxqfvpoB03oA2gIR0CSKZbsniNsdX2UKGgGR0AQ5qTKT0QLaAdNLAFoCEdAki2J00WM0nV9lChoBkdAYzxQLNOdoWgHTUACaAhHQJI14rEtNBZ1fZQoaAZHQFawlHjIaLpoB03oA2gIR0CSNj8Jlar4dX2UKGgGR0Bci1LWZqmCaAdN6ANoCEdAkkG9YW+GoXV9lChoBkdAYuS/cFhXsGgHTegDaAhHQJJGqEZiuuB1fZQoaAZHQGVpU3Ov+wVoB03eAmgIR0CSSGs+3YthdX2UKGgGR0BNJz1CgK4QaAdN6ANoCEdAkk9tHtnf23V9lChoBkdAYpgakRBeHGgHTegDaAhHQJJi/0PH1e11fZQoaAZHQFi2buMMqjJoB03oA2gIR0CSad47A+INdX2UKGgGR0BStLeyiVSoaAdN6ANoCEdAkmvkbcXWOXV9lChoBkdAYj+eHSF492gHTegDaAhHQJJyjOcDr7h1fZQoaAZHwEmcLtu1ndxoB01yAWgIR0CSdDxxT850dX2UKGgGR0A43qjafzz3aAdN6ANoCEdAkn7fmxMWXXV9lChoBkdAVvyZVn27F2gHTTMDaAhHQJKASG34Kx91fZQoaAZHQDaF7eEZiuxoB01MAWgIR0CShUdp7CzkdX2UKGgGR0BjBdAC4jKQaAdN6ANoCEdAkouwBo24u3V9lChoBkdAYDKwxFiKBWgHTegDaAhHQJKNxUkv9Lp1fZQoaAZHwCqxhnanJkpoB03/AWgIR0CSlydLg4wRdX2UKGgGRz/nGlQ/HHWCaAdNNQFoCEdAkpkXAuZkTnV9lChoBkdAWe1+XqqwQmgHTegDaAhHQJKchWzWwvB1fZQoaAZHwFATQnQY1pFoB02+AWgIR0CSokInBtUGdX2UKGgGR0BitQ8EFGG3aAdN6ANoCEdAkq0aciGFjHV9lChoBkdAZJMsbvPTomgHTbYBaAhHQJKtq5LAYYR1fZQoaAZHQF3AZFocrAhoB03oA2gIR0CStPf+jua4dX2UKGgGR0BjseavzOHGaAdN6ANoCEdAkrdK+FlCkXV9lChoBkdAV1p4keIVM2gHTegDaAhHQJLFoOf/WDp1fZQoaAZHQGJ47gKnei1oB03oA2gIR0CSxjA7PppwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQuBqZ77R8Rmtx/Y0K0XgXAowDaW5jlIoRv7hMG/uYxl+3mBZRtVkFyQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRKZQRRaXVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}