File size: 1,659 Bytes
a881eba be2e1e6 a881eba be2e1e6 6e6d0ee a881eba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- Jungwonchang/spgispeech_xs
base_model: openai/whisper-base.en
model-index:
- name: openai/whisper-base.en, all the parameters updated for 5 epochs
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Test set for spgispeech
type: kensho/spgispeech
config: test
split: test
metrics:
- type: wer
value: 8.8
name: WER
- type: cer
value: 2.96
name: CER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-base.en, all the parameters updated for 5 epochs
This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the 2 hour dataset of SPGIspeech(custom dataset) dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 120
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.15.0
|