--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl language: - ja datasets: - weblab-GENIAC/aya-ja-evol-instruct-calm3-dpo-masked widget: - text: 生成AIについて説明して下さい。 --- # llm-jp-3-13b_lora_20241130 - **Developed by:** JunichiroMorita - **License:** CC-BY-NC-SA - **Finetuned from model :** llm-jp/llm-jp-3-13b # Usage ```python !pip install unsloth !pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install -U torch !pip install -U peft ``` ```python from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm import re model_id = "llm-jp/llm-jp-3-13b" adapter_id = f"JunichiroMorita/llm-jp-3-13b-it_lora_20241216" HF_TOKEN = 'your_hugging_face_token' dtype = None load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, ) model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN) datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" FastLanguageModel.for_inference(model) results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答\n')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) with open(f'./llm-jp-3-13b-it_lora_20241216_output.jsonl', 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ``` # Data ## LoRA - [llmのための日本語インストラクションデータ (CC-BY-NC-SA)](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)\[1] \[1]:関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024) ## DPO - [aya-ja-evol-instruct-calm3-dpo-masked (Apache-2.0)](https://huggingface.co/datasets/weblab-GENIAC/aya-ja-evol-instruct-calm3-dpo-masked)