--- tags: - asteroid - audio - MultiDecoderDPRNN datasets: - Wsj0MixVar - sep_clean inference: false --- ## Asteroid model ## Description: Refer to paper "Multi-Decoder DPRNN: High Accuracy Source Counting and Separation", Junzhe Zhu, Raymond Yeh, Mark Hasegawa-Johnson. https://arxiv.org/abs/2011.12022 Demo Page: https://junzhejosephzhu.github.io/Multi-Decoder-DPRNN/ Original research repo is at https://github.com/JunzheJosephZhu/MultiDecoder-DPRNN This model was trained by Joseph Zhu using the wsj0-mix-var/Multi-Decoder-DPRNN recipe in Asteroid. It was trained on the `sep_clean` task of the Wsj0MixVar dataset. ## Training config: ```yaml filterbank: n_filters: 64 kernel_size: 8 stride: 4 masknet: n_srcs: [2, 3, 4, 5] bn_chan: 128 hid_size: 128 chunk_size: 128 hop_size: 64 n_repeats: 8 mask_act: 'sigmoid' bidirectional: true dropout: 0 use_mulcat: false training: epochs: 200 batch_size: 2 num_workers: 2 half_lr: yes lr_decay: yes early_stop: yes gradient_clipping: 5 optim: optimizer: adam lr: 0.001 weight_decay: 0.00000 data: train_dir: "data/{}speakers/wav8k/min/tr" valid_dir: "data/{}speakers/wav8k/min/cv" task: sep_clean sample_rate: 8000 seglen: 4.0 minlen: 2.0 loss: lambda: 0.05 ``` ## Results: ```yaml 'Accuracy': 0.9723333333333334, 'P-Si-SNR': 10.36027378628496 ```