--- license: apache-2.0 language: - en tags: - audio - audio-source-separation --- # An efficient encoder-decoder architecture with top-down attention for speech separation [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/an-efficient-encoder-decoder-architecture/speech-separation-on-libri2mix)](https://paperswithcode.com/sota/speech-separation-on-libri2mix?p=an-efficient-encoder-decoder-architecture) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/an-efficient-encoder-decoder-architecture/speech-separation-on-wham)](https://paperswithcode.com/sota/speech-separation-on-wham?p=an-efficient-encoder-decoder-architecture) This repository is the official implementation of [An efficient encoder-decoder architecture with top-down attention for speech separation](https://cslikai.cn/project/TDANet) [Paper link](https://openreview.net/pdf?id=fzberKYWKsI). ``` @inproceedings{tdanet2023iclr, title={An efficient encoder-decoder architecture with top-down attention for speech separation}, author={Li, Kai and Yang, Runxuan and Hu, Xiaolin}, booktitle={ICLR}, year={2023} } ``` ## Training Dataset - LRS2-2Mix ## Config ```yaml enc_kernel_size: 4 in_channels: 512 num_blocks: 16 num_sources: 2 out_channels: 128 upsampling_depth: 5 ```