Jyotsna945
commited on
Commit
·
7156e77
1
Parent(s):
60638d2
Push LunarLander-v2 Model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_LunarLander-v2.zip +3 -0
- ppo_LunarLander-v2/_stable_baselines3_version +1 -0
- ppo_LunarLander-v2/data +95 -0
- ppo_LunarLander-v2/policy.optimizer.pth +3 -0
- ppo_LunarLander-v2/policy.pth +3 -0
- ppo_LunarLander-v2/pytorch_variables.pth +3 -0
- ppo_LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 190.57 +/- 82.51
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe89ed2c4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe89ed2c550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe89ed2c5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe89ed2c670>", "_build": "<function ActorCriticPolicy._build at 0x7fe89ed2c700>", "forward": "<function ActorCriticPolicy.forward at 0x7fe89ed2c790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe89ed2c820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe89ed2c8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe89ed2c940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe89ed2c9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe89ed2ca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe89ed2caf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe89ed2e2c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678591237045182877, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBTTj57m7c72hJNutJz37cgTFA9fRJvOQAAgD8AAIA/ZqZLuylMXrr4/se5NggmtgTgnztTMuc4AACAPwAAgD/gA4M+++C3vIIAc7yFNZc8bTMjvsDjbD0AAIA/AACAP1pf/D1I67C60msgujxxUzQTfIE5K5k4OQAAgD8AAIA/eucJPrjW3rtaToA9hIr8u/ItO71AsdS8AACAPwAAgD868DU+fecZPIpvBrsQDfW43fuuPdOq5zkAAIA/AACAP0Br2b34Qgg/mvbuOsGreb7ZJaS8XqgovQAAAAAAAAAAauTbPtibrr11H2c7gpQDupX3W756xcW5AACAPwAAgD/+I6i+w8NSO7spXjz3UoK9g6Ucvcd0izwAAAAAAAAAAGYgAjxrHz0/We2IvXmetr7U5eC8VEYHvAAAAAAAAAAAQGpZPtzRPz7G9G09RlsrvgY9vLtdHAW9AAAAAAAAAACatQe8XJs6urrVQTjL5ke2DeqSOfg6W7cAAIA/AACAP5oDjr3DCWi67YxRO94kzTSUR726+CVyugAAgD8AAIA/5rxaPcORXrouIZm4qy9uMtnuxrr8zbA3AACAPwAAgD+AINs9r6xWPgi3uzuOSS6+UVuzPKaF+joAAAAAAAAAAOsqnr473tM+mcy+vWyaO74606W9XqYUPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpdjRONRTXUCUhpRSlIwBbJRN6AOMAXSUR0CUkWtTkyULdX2UKGgGaAloD0MIjlph+t4PYUCUhpRSlGgVTegDaBZHQJSVuAqd6LR1fZQoaAZoCWgPQwi5jQbwlqtiQJSGlFKUaBVN6ANoFkdAlJlbZ8KG+XV9lChoBmgJaA9DCGzrp/+sVUTAlIaUUpRoFU2cAWgWR0CUmcynDR+jdX2UKGgGaAloD0MINZvHYTBzOUCUhpRSlGgVS71oFkdAlLyS2lVLjHV9lChoBmgJaA9DCB0fLc4YOmBAlIaUUpRoFU3oA2gWR0CUv/K9f1HwdX2UKGgGaAloD0MI2GX4T7eBYUCUhpRSlGgVTegDaBZHQJTCRpoK2KF1fZQoaAZoCWgPQwjAQBAgQ3BnQJSGlFKUaBVN6ANoFkdAlMKl5OafBnV9lChoBmgJaA9DCJmbb0T3TC7AlIaUUpRoFUu8aBZHQJTH2HqNZNh1fZQoaAZoCWgPQwiZLVkV4WYbQJSGlFKUaBVL9GgWR0CUyN1M/QjVdX2UKGgGaAloD0MIWfs726O5Q8CUhpRSlGgVTTwBaBZHQJTJzdfsu4B1fZQoaAZoCWgPQwh+VMN+z2pgQJSGlFKUaBVN6ANoFkdAlMnMsg+yJXV9lChoBmgJaA9DCJuuJ7ouZl1AlIaUUpRoFU3oA2gWR0CUyoGXokiVdX2UKGgGaAloD0MIaccNvxvsakCUhpRSlGgVTUgBaBZHQJTNXULDye91fZQoaAZoCWgPQwjwxKwXQxddQJSGlFKUaBVN6ANoFkdAlM549s7+1nV9lChoBmgJaA9DCDAOLh1zsjDAlIaUUpRoFUvoaBZHQJTZZHVf/m11fZQoaAZoCWgPQwjou1tZogNdQJSGlFKUaBVN6ANoFkdAlNshIWgvlHV9lChoBmgJaA9DCLOyfchbj15AlIaUUpRoFU3oA2gWR0CU2zRlYlpodX2UKGgGaAloD0MIYYpyaXzUY0CUhpRSlGgVTegDaBZHQJTdBhYvFm51fZQoaAZoCWgPQwjc14FzxrVpQJSGlFKUaBVNMwJoFkdAlN57oW56MXV9lChoBmgJaA9DCML4adwbjGJAlIaUUpRoFU3oA2gWR0CU4bTyauwHdX2UKGgGaAloD0MIAyZw6+63b0CUhpRSlGgVTUcCaBZHQJTh0e3hGYt1fZQoaAZoCWgPQwgyPWGJB6NeQJSGlFKUaBVN6ANoFkdAlOIwZGax5nV9lChoBmgJaA9DCKRv0jQoh11AlIaUUpRoFU3oA2gWR0CU64fm9xp+dX2UKGgGaAloD0MIIhyz7MksakCUhpRSlGgVTZoBaBZHQJTzdUFSsKd1fZQoaAZoCWgPQwgcmNwosmNfQJSGlFKUaBVN6ANoFkdAlRkIwh4dIXV9lChoBmgJaA9DCFu0AG0rI2hAlIaUUpRoFU0BAmgWR0CVGd88La24dX2UKGgGaAloD0MI8yA9RQ70XECUhpRSlGgVTegDaBZHQJUf9joZAIJ1fZQoaAZoCWgPQwhCzZAqis5fQJSGlFKUaBVN6ANoFkdAlSF/Fm4Aj3V9lChoBmgJaA9DCLDFbp9VaVxAlIaUUpRoFU3oA2gWR0CVItgGKQ7tdX2UKGgGaAloD0MIurvOhvxbYECUhpRSlGgVTegDaBZHQJUi2RB/qgR1fZQoaAZoCWgPQwhc598ue7xjQJSGlFKUaBVN6ANoFkdAlSPZiVjZtnV9lChoBmgJaA9DCPrvwWuXmEFAlIaUUpRoFUuwaBZHQJUl9Xr+o991fZQoaAZoCWgPQwiaBkXzAOxdQJSGlFKUaBVN6ANoFkdAlSm9at9x63V9lChoBmgJaA9DCJ1IMNXMwF5AlIaUUpRoFU3oA2gWR0CVN/3ZPEbYdX2UKGgGaAloD0MILLZJRWOMWECUhpRSlGgVTegDaBZHQJU4FIsiB5J1fZQoaAZoCWgPQwgCEk2gCCNkQJSGlFKUaBVN6ANoFkdAlTswswtap3V9lChoBmgJaA9DCAPrOH6oamNAlIaUUpRoFU3oA2gWR0CVPqOkLx7RdX2UKGgGaAloD0MIbosyG+QoYECUhpRSlGgVTegDaBZHQJU+vW1+iJx1fZQoaAZoCWgPQwjt8Ndkje5dQJSGlFKUaBVN6ANoFkdAlT8kZvUBn3V9lChoBmgJaA9DCO9xpglbMGBAlIaUUpRoFU3oA2gWR0CVRtYa5wwTdX2UKGgGaAloD0MIjBL0F3r4XUCUhpRSlGgVTegDaBZHQJVMultTDO11fZQoaAZoCWgPQwibc/BMaNZFwJSGlFKUaBVNiQFoFkdAlXWpBC2MKnV9lChoBmgJaA9DCEbqPZXTimNAlIaUUpRoFU3oA2gWR0CVd35oXbdrdX2UKGgGaAloD0MIA8+9h0tzW0CUhpRSlGgVTegDaBZHQJV8s+xGDth1fZQoaAZoCWgPQwgucHmsmTxjQJSGlFKUaBVN6ANoFkdAlX3MN6PbPHV9lChoBmgJaA9DCGd8X1wqR2BAlIaUUpRoFU3oA2gWR0CVfrjXFtKqdX2UKGgGaAloD0MIwHYwYp+iXECUhpRSlGgVTegDaBZHQJV+twZOzpp1fZQoaAZoCWgPQwg6BfnZyFJZQJSGlFKUaBVN6ANoFkdAlX9mWdEsrnV9lChoBmgJaA9DCD3WjAxybGJAlIaUUpRoFU3oA2gWR0CVgMOhkAggdX2UKGgGaAloD0MIfZV87C6qX0CUhpRSlGgVTegDaBZHQJWDDfO2RaJ1fZQoaAZoCWgPQwj5+ITsvJ0sQJSGlFKUaBVL62gWR0CViYMaCL/CdX2UKGgGaAloD0MIO1W+Z6TJZECUhpRSlGgVTaIDaBZHQJWOfI7vG6x1fZQoaAZoCWgPQwgxem6hqzliQJSGlFKUaBVN6ANoFkdAlY8d9x6v7nV9lChoBmgJaA9DCLe4xmcy2mNAlIaUUpRoFU3oA2gWR0CVjy/ZM+NcdX2UKGgGaAloD0MIU3qml5gIaECUhpRSlGgVTWABaBZHQJWTYXXRPXV1fZQoaAZoCWgPQwixi6IHvo9hQJSGlFKUaBVN6ANoFkdAlZd2ReTmn3V9lChoBmgJaA9DCO1jBb8Nm2JAlIaUUpRoFU3oA2gWR0CVmCM85jpcdX2UKGgGaAloD0MIxCedSLB6YkCUhpRSlGgVTegDaBZHQJWjLxEv0yx1fZQoaAZoCWgPQwhoPBHEeaRfQJSGlFKUaBVN6ANoFkdAlakDPnjhk3V9lChoBmgJaA9DCE8Hsp5aKWpAlIaUUpRoFU1jA2gWR0CVqRbzK9wndX2UKGgGaAloD0MIqS9LOzXuYUCUhpRSlGgVTegDaBZHQJXQ0Lqlgtx1fZQoaAZoCWgPQwjwNQTH5S1gQJSGlFKUaBVN6ANoFkdAldj0sz2vjnV9lChoBmgJaA9DCEoofSHkVmBAlIaUUpRoFU3oA2gWR0CV2rMuez2OdX2UKGgGaAloD0MIlQwAVVyXZECUhpRSlGgVTegDaBZHQJXcOgVXV9Z1fZQoaAZoCWgPQwhy3ZTyWnZfQJSGlFKUaBVN6ANoFkdAld1k5IYm9nV9lChoBmgJaA9DCK97KxITvl1AlIaUUpRoFU3oA2gWR0CV4nHLzPKMdX2UKGgGaAloD0MIy9b6IqFNVUCUhpRSlGgVTegDaBZHQJXrA287IT51fZQoaAZoCWgPQwhiwJKrWG9eQJSGlFKUaBVN6ANoFkdAlfEPvnbItHV9lChoBmgJaA9DCHl3ZKy21mFAlIaUUpRoFU3oA2gWR0CV8cYs/Y8MdX2UKGgGaAloD0MI0GBT51F5X0CUhpRSlGgVTegDaBZHQJXx15AyEct1fZQoaAZoCWgPQwh9ryE4LuhYQJSGlFKUaBVN6ANoFkdAlfT40ALiM3V9lChoBmgJaA9DCFD8GHPXb1ZAlIaUUpRoFU3oA2gWR0CV988wYcebdX2UKGgGaAloD0MIR+Umaml1W0CUhpRSlGgVTegDaBZHQJX4TzI3irF1fZQoaAZoCWgPQwj1nzU//r9iQJSGlFKUaBVN6ANoFkdAlf/Nbs4T9XV9lChoBmgJaA9DCF0xI7w9u2pAlIaUUpRoFU1+AWgWR0CV/+ADaGpNdX2UKGgGaAloD0MIUirhCT05b0CUhpRSlGgVTWwCaBZHQJYArwvxpcp1fZQoaAZoCWgPQwjpuvCD871tQJSGlFKUaBVNTAFoFkdAlgGlRtP56HV9lChoBmgJaA9DCGItPgXAcV5AlIaUUpRoFU3oA2gWR0CWBFyd4FA3dX2UKGgGaAloD0MIJxWNtT91YECUhpRSlGgVTegDaBZHQJYEa9M9KVZ1fZQoaAZoCWgPQwiiz0cZcaEOwJSGlFKUaBVNTQFoFkdAlgkuumrKeXV9lChoBmgJaA9DCORO6WD9jF9AlIaUUpRoFU3oA2gWR0CWLjR3/xUedX2UKGgGaAloD0MIM6fLYmJ/XUCUhpRSlGgVTegDaBZHQJYy0pazNUx1fZQoaAZoCWgPQwiKHvgYrGxeQJSGlFKUaBVN6ANoFkdAljPBshxHXnV9lChoBmgJaA9DCAq/1M+buVFAlIaUUpRoFU3oA2gWR0CWNI+EytV8dX2UKGgGaAloD0MI6q7sgkGnYUCUhpRSlGgVTegDaBZHQJY5grsjVx11fZQoaAZoCWgPQwj2twTgn6JiQJSGlFKUaBVN6ANoFkdAlkstLteD4HV9lChoBmgJaA9DCLb3qSq0xGFAlIaUUpRoFU3oA2gWR0CWS0U4JeE7dX2UKGgGaAloD0MI9MEyNnTiXECUhpRSlGgVTegDaBZHQJZQdm9QGfR1fZQoaAZoCWgPQwg9mX/0TXJfQJSGlFKUaBVN6ANoFkdAllRqRU3n6nV9lChoBmgJaA9DCK/RcqCHxW5AlIaUUpRoFU3YAWgWR0CWWrHCoCMhdX2UKGgGaAloD0MIfQiqRq9GaUCUhpRSlGgVTagDaBZHQJZb3duYQat1fZQoaAZoCWgPQwjYutQIfV1hQJSGlFKUaBVN6ANoFkdAll0JQxesxXV9lChoBmgJaA9DCLjmjv6XkF1AlIaUUpRoFU3oA2gWR0CWXRt+kP+XdX2UKGgGaAloD0MIgxd9Bem0YECUhpRSlGgVTegDaBZHQJZd0OZssQN1fZQoaAZoCWgPQwj6Dn7igKBiQJSGlFKUaBVN6ANoFkdAlmFjBZZB9nV9lChoBmgJaA9DCBKgppYt62BAlIaUUpRoFU3oA2gWR0CWYXDqW1MNdX2UKGgGaAloD0MIY5tUNBY5cECUhpRSlGgVTf4CaBZHQJZiyL876pJ1fZQoaAZoCWgPQwiPjNXmf7ltQJSGlFKUaBVNoAFoFkdAlmLQQg9vCXV9lChoBmgJaA9DCCJQ/YNIZmBAlIaUUpRoFU3oA2gWR0CWZM9LpRoAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.98, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo_LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a47149856d22433bd59ea7b54504ea430e4cc99dd7eb79a2ab124a0aed852b1d
|
3 |
+
size 147420
|
ppo_LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo_LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe89ed2c4c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe89ed2c550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe89ed2c5e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe89ed2c670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe89ed2c700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe89ed2c790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe89ed2c820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe89ed2c8b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe89ed2c940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe89ed2c9d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe89ed2ca60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe89ed2caf0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe89ed2e2c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678591237045182877,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBTTj57m7c72hJNutJz37cgTFA9fRJvOQAAgD8AAIA/ZqZLuylMXrr4/se5NggmtgTgnztTMuc4AACAPwAAgD/gA4M+++C3vIIAc7yFNZc8bTMjvsDjbD0AAIA/AACAP1pf/D1I67C60msgujxxUzQTfIE5K5k4OQAAgD8AAIA/eucJPrjW3rtaToA9hIr8u/ItO71AsdS8AACAPwAAgD868DU+fecZPIpvBrsQDfW43fuuPdOq5zkAAIA/AACAP0Br2b34Qgg/mvbuOsGreb7ZJaS8XqgovQAAAAAAAAAAauTbPtibrr11H2c7gpQDupX3W756xcW5AACAPwAAgD/+I6i+w8NSO7spXjz3UoK9g6Ucvcd0izwAAAAAAAAAAGYgAjxrHz0/We2IvXmetr7U5eC8VEYHvAAAAAAAAAAAQGpZPtzRPz7G9G09RlsrvgY9vLtdHAW9AAAAAAAAAACatQe8XJs6urrVQTjL5ke2DeqSOfg6W7cAAIA/AACAP5oDjr3DCWi67YxRO94kzTSUR726+CVyugAAgD8AAIA/5rxaPcORXrouIZm4qy9uMtnuxrr8zbA3AACAPwAAgD+AINs9r6xWPgi3uzuOSS6+UVuzPKaF+joAAAAAAAAAAOsqnr473tM+mcy+vWyaO74606W9XqYUPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpdjRONRTXUCUhpRSlIwBbJRN6AOMAXSUR0CUkWtTkyULdX2UKGgGaAloD0MIjlph+t4PYUCUhpRSlGgVTegDaBZHQJSVuAqd6LR1fZQoaAZoCWgPQwi5jQbwlqtiQJSGlFKUaBVN6ANoFkdAlJlbZ8KG+XV9lChoBmgJaA9DCGzrp/+sVUTAlIaUUpRoFU2cAWgWR0CUmcynDR+jdX2UKGgGaAloD0MINZvHYTBzOUCUhpRSlGgVS71oFkdAlLyS2lVLjHV9lChoBmgJaA9DCB0fLc4YOmBAlIaUUpRoFU3oA2gWR0CUv/K9f1HwdX2UKGgGaAloD0MI2GX4T7eBYUCUhpRSlGgVTegDaBZHQJTCRpoK2KF1fZQoaAZoCWgPQwjAQBAgQ3BnQJSGlFKUaBVN6ANoFkdAlMKl5OafBnV9lChoBmgJaA9DCJmbb0T3TC7AlIaUUpRoFUu8aBZHQJTH2HqNZNh1fZQoaAZoCWgPQwiZLVkV4WYbQJSGlFKUaBVL9GgWR0CUyN1M/QjVdX2UKGgGaAloD0MIWfs726O5Q8CUhpRSlGgVTTwBaBZHQJTJzdfsu4B1fZQoaAZoCWgPQwh+VMN+z2pgQJSGlFKUaBVN6ANoFkdAlMnMsg+yJXV9lChoBmgJaA9DCJuuJ7ouZl1AlIaUUpRoFU3oA2gWR0CUyoGXokiVdX2UKGgGaAloD0MIaccNvxvsakCUhpRSlGgVTUgBaBZHQJTNXULDye91fZQoaAZoCWgPQwjwxKwXQxddQJSGlFKUaBVN6ANoFkdAlM549s7+1nV9lChoBmgJaA9DCDAOLh1zsjDAlIaUUpRoFUvoaBZHQJTZZHVf/m11fZQoaAZoCWgPQwjou1tZogNdQJSGlFKUaBVN6ANoFkdAlNshIWgvlHV9lChoBmgJaA9DCLOyfchbj15AlIaUUpRoFU3oA2gWR0CU2zRlYlpodX2UKGgGaAloD0MIYYpyaXzUY0CUhpRSlGgVTegDaBZHQJTdBhYvFm51fZQoaAZoCWgPQwjc14FzxrVpQJSGlFKUaBVNMwJoFkdAlN57oW56MXV9lChoBmgJaA9DCML4adwbjGJAlIaUUpRoFU3oA2gWR0CU4bTyauwHdX2UKGgGaAloD0MIAyZw6+63b0CUhpRSlGgVTUcCaBZHQJTh0e3hGYt1fZQoaAZoCWgPQwgyPWGJB6NeQJSGlFKUaBVN6ANoFkdAlOIwZGax5nV9lChoBmgJaA9DCKRv0jQoh11AlIaUUpRoFU3oA2gWR0CU64fm9xp+dX2UKGgGaAloD0MIIhyz7MksakCUhpRSlGgVTZoBaBZHQJTzdUFSsKd1fZQoaAZoCWgPQwgcmNwosmNfQJSGlFKUaBVN6ANoFkdAlRkIwh4dIXV9lChoBmgJaA9DCFu0AG0rI2hAlIaUUpRoFU0BAmgWR0CVGd88La24dX2UKGgGaAloD0MI8yA9RQ70XECUhpRSlGgVTegDaBZHQJUf9joZAIJ1fZQoaAZoCWgPQwhCzZAqis5fQJSGlFKUaBVN6ANoFkdAlSF/Fm4Aj3V9lChoBmgJaA9DCLDFbp9VaVxAlIaUUpRoFU3oA2gWR0CVItgGKQ7tdX2UKGgGaAloD0MIurvOhvxbYECUhpRSlGgVTegDaBZHQJUi2RB/qgR1fZQoaAZoCWgPQwhc598ue7xjQJSGlFKUaBVN6ANoFkdAlSPZiVjZtnV9lChoBmgJaA9DCPrvwWuXmEFAlIaUUpRoFUuwaBZHQJUl9Xr+o991fZQoaAZoCWgPQwiaBkXzAOxdQJSGlFKUaBVN6ANoFkdAlSm9at9x63V9lChoBmgJaA9DCJ1IMNXMwF5AlIaUUpRoFU3oA2gWR0CVN/3ZPEbYdX2UKGgGaAloD0MILLZJRWOMWECUhpRSlGgVTegDaBZHQJU4FIsiB5J1fZQoaAZoCWgPQwgCEk2gCCNkQJSGlFKUaBVN6ANoFkdAlTswswtap3V9lChoBmgJaA9DCAPrOH6oamNAlIaUUpRoFU3oA2gWR0CVPqOkLx7RdX2UKGgGaAloD0MIbosyG+QoYECUhpRSlGgVTegDaBZHQJU+vW1+iJx1fZQoaAZoCWgPQwjt8Ndkje5dQJSGlFKUaBVN6ANoFkdAlT8kZvUBn3V9lChoBmgJaA9DCO9xpglbMGBAlIaUUpRoFU3oA2gWR0CVRtYa5wwTdX2UKGgGaAloD0MIjBL0F3r4XUCUhpRSlGgVTegDaBZHQJVMultTDO11fZQoaAZoCWgPQwibc/BMaNZFwJSGlFKUaBVNiQFoFkdAlXWpBC2MKnV9lChoBmgJaA9DCEbqPZXTimNAlIaUUpRoFU3oA2gWR0CVd35oXbdrdX2UKGgGaAloD0MIA8+9h0tzW0CUhpRSlGgVTegDaBZHQJV8s+xGDth1fZQoaAZoCWgPQwgucHmsmTxjQJSGlFKUaBVN6ANoFkdAlX3MN6PbPHV9lChoBmgJaA9DCGd8X1wqR2BAlIaUUpRoFU3oA2gWR0CVfrjXFtKqdX2UKGgGaAloD0MIwHYwYp+iXECUhpRSlGgVTegDaBZHQJV+twZOzpp1fZQoaAZoCWgPQwg6BfnZyFJZQJSGlFKUaBVN6ANoFkdAlX9mWdEsrnV9lChoBmgJaA9DCD3WjAxybGJAlIaUUpRoFU3oA2gWR0CVgMOhkAggdX2UKGgGaAloD0MIfZV87C6qX0CUhpRSlGgVTegDaBZHQJWDDfO2RaJ1fZQoaAZoCWgPQwj5+ITsvJ0sQJSGlFKUaBVL62gWR0CViYMaCL/CdX2UKGgGaAloD0MIO1W+Z6TJZECUhpRSlGgVTaIDaBZHQJWOfI7vG6x1fZQoaAZoCWgPQwgxem6hqzliQJSGlFKUaBVN6ANoFkdAlY8d9x6v7nV9lChoBmgJaA9DCLe4xmcy2mNAlIaUUpRoFU3oA2gWR0CVjy/ZM+NcdX2UKGgGaAloD0MIU3qml5gIaECUhpRSlGgVTWABaBZHQJWTYXXRPXV1fZQoaAZoCWgPQwixi6IHvo9hQJSGlFKUaBVN6ANoFkdAlZd2ReTmn3V9lChoBmgJaA9DCO1jBb8Nm2JAlIaUUpRoFU3oA2gWR0CVmCM85jpcdX2UKGgGaAloD0MIxCedSLB6YkCUhpRSlGgVTegDaBZHQJWjLxEv0yx1fZQoaAZoCWgPQwhoPBHEeaRfQJSGlFKUaBVN6ANoFkdAlakDPnjhk3V9lChoBmgJaA9DCE8Hsp5aKWpAlIaUUpRoFU1jA2gWR0CVqRbzK9wndX2UKGgGaAloD0MIqS9LOzXuYUCUhpRSlGgVTegDaBZHQJXQ0Lqlgtx1fZQoaAZoCWgPQwjwNQTH5S1gQJSGlFKUaBVN6ANoFkdAldj0sz2vjnV9lChoBmgJaA9DCEoofSHkVmBAlIaUUpRoFU3oA2gWR0CV2rMuez2OdX2UKGgGaAloD0MIlQwAVVyXZECUhpRSlGgVTegDaBZHQJXcOgVXV9Z1fZQoaAZoCWgPQwhy3ZTyWnZfQJSGlFKUaBVN6ANoFkdAld1k5IYm9nV9lChoBmgJaA9DCK97KxITvl1AlIaUUpRoFU3oA2gWR0CV4nHLzPKMdX2UKGgGaAloD0MIy9b6IqFNVUCUhpRSlGgVTegDaBZHQJXrA287IT51fZQoaAZoCWgPQwhiwJKrWG9eQJSGlFKUaBVN6ANoFkdAlfEPvnbItHV9lChoBmgJaA9DCHl3ZKy21mFAlIaUUpRoFU3oA2gWR0CV8cYs/Y8MdX2UKGgGaAloD0MI0GBT51F5X0CUhpRSlGgVTegDaBZHQJXx15AyEct1fZQoaAZoCWgPQwh9ryE4LuhYQJSGlFKUaBVN6ANoFkdAlfT40ALiM3V9lChoBmgJaA9DCFD8GHPXb1ZAlIaUUpRoFU3oA2gWR0CV988wYcebdX2UKGgGaAloD0MIR+Umaml1W0CUhpRSlGgVTegDaBZHQJX4TzI3irF1fZQoaAZoCWgPQwj1nzU//r9iQJSGlFKUaBVN6ANoFkdAlf/Nbs4T9XV9lChoBmgJaA9DCF0xI7w9u2pAlIaUUpRoFU1+AWgWR0CV/+ADaGpNdX2UKGgGaAloD0MIUirhCT05b0CUhpRSlGgVTWwCaBZHQJYArwvxpcp1fZQoaAZoCWgPQwjpuvCD871tQJSGlFKUaBVNTAFoFkdAlgGlRtP56HV9lChoBmgJaA9DCGItPgXAcV5AlIaUUpRoFU3oA2gWR0CWBFyd4FA3dX2UKGgGaAloD0MIJxWNtT91YECUhpRSlGgVTegDaBZHQJYEa9M9KVZ1fZQoaAZoCWgPQwiiz0cZcaEOwJSGlFKUaBVNTQFoFkdAlgkuumrKeXV9lChoBmgJaA9DCORO6WD9jF9AlIaUUpRoFU3oA2gWR0CWLjR3/xUedX2UKGgGaAloD0MIM6fLYmJ/XUCUhpRSlGgVTegDaBZHQJYy0pazNUx1fZQoaAZoCWgPQwiKHvgYrGxeQJSGlFKUaBVN6ANoFkdAljPBshxHXnV9lChoBmgJaA9DCAq/1M+buVFAlIaUUpRoFU3oA2gWR0CWNI+EytV8dX2UKGgGaAloD0MI6q7sgkGnYUCUhpRSlGgVTegDaBZHQJY5grsjVx11fZQoaAZoCWgPQwj2twTgn6JiQJSGlFKUaBVN6ANoFkdAlkstLteD4HV9lChoBmgJaA9DCLb3qSq0xGFAlIaUUpRoFU3oA2gWR0CWS0U4JeE7dX2UKGgGaAloD0MI9MEyNnTiXECUhpRSlGgVTegDaBZHQJZQdm9QGfR1fZQoaAZoCWgPQwg9mX/0TXJfQJSGlFKUaBVN6ANoFkdAllRqRU3n6nV9lChoBmgJaA9DCK/RcqCHxW5AlIaUUpRoFU3YAWgWR0CWWrHCoCMhdX2UKGgGaAloD0MIfQiqRq9GaUCUhpRSlGgVTagDaBZHQJZb3duYQat1fZQoaAZoCWgPQwjYutQIfV1hQJSGlFKUaBVN6ANoFkdAll0JQxesxXV9lChoBmgJaA9DCLjmjv6XkF1AlIaUUpRoFU3oA2gWR0CWXRt+kP+XdX2UKGgGaAloD0MIgxd9Bem0YECUhpRSlGgVTegDaBZHQJZd0OZssQN1fZQoaAZoCWgPQwj6Dn7igKBiQJSGlFKUaBVN6ANoFkdAlmFjBZZB9nV9lChoBmgJaA9DCBKgppYt62BAlIaUUpRoFU3oA2gWR0CWYXDqW1MNdX2UKGgGaAloD0MIY5tUNBY5cECUhpRSlGgVTf4CaBZHQJZiyL876pJ1fZQoaAZoCWgPQwiPjNXmf7ltQJSGlFKUaBVNoAFoFkdAlmLQQg9vCXV9lChoBmgJaA9DCCJQ/YNIZmBAlIaUUpRoFU3oA2gWR0CWZM9LpRoAdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 372,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.98,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 6,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo_LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9018e1ffb7fbc2a1fb9dfdd13bfb5732bca58e02d796495b560677b28e609948
|
3 |
+
size 87929
|
ppo_LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d705040334af7fdee3929e66ea8891cb1e5ffe53d936774c9e65b0307fd2fee2
|
3 |
+
size 43393
|
ppo_LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (199 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 190.57090390375623, "std_reward": 82.5129853918501, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T03:47:07.841712"}
|