File size: 16,804 Bytes
a4e305d 27c03f4 a4e305d f69e3f8 bee2080 a4e305d 605ab16 a4e305d 605ab16 a4e305d 27c03f4 605ab16 a4e305d 27c03f4 605ab16 a4e305d 6ec8317 a4e305d 6ec8317 a4e305d 6ec8317 a4e305d 6ec8317 a4e305d 6ec8317 a4e305d 4521806 a4e305d 4521806 a4e305d 605ab16 a4e305d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
---
license: mit
language:
- en
- ko
tags:
- KT
- K-intelligence
- Mi:dm
pipeline_tag: text-generation
library_name: transformers
---
<p align="center">
<br>
<span style="font-size: 60px; font-weight: bold;">Mi:dm 2.0 Mini</span>
</br>
</p>
<p align="center">
🤗 <a href="https://huggingface.co/collections/K-intelligence/mi-dm-20-6866406c301e5f45a6926af8">Mi:dm 2.0 Models</a> |
📜 <a href="https://github.com/K-intelligence-Midm/Midm-2.0/blob/main/Mi_dm2_0_technical_report.pdf">Mi:dm 2.0 Technical Report</a> |
📕 Mi:dm 2.0 Technical Blog*
</p>
<p align="center"><sub>*To be released soon</sub></p>
<br>
## News 📢
- 🔜 _(Coming Soon!) GGUF format model files will be available soon for easier local deployment._
- ⚡️`2025/07/04`: Released Mi:dm 2.0 Model collection on Hugging Face🤗.
<br>
<br>
# Table of Contents
- ___Overview___
- [Mi:dm 2.0](#midm-20)
- [Quickstart](#quickstart)
- [Evaluation](#evaluation)
- ___Usage___
- [Run on Friendly.AI](#run-on-friendliai)
- [Run on Your Local Machine](#run-on-your-local-machine)
- [Deployment](#deployment)
- [Tutorials](#tutorials)
- ___More Information___
- [Limitation](#limitation)
- [License](#license)
- [Contact](#contact)
<br>
<br>
# Overview
### Mi:dm 2.0
**Mi:dm 2.0** is a __"Korea-centric AI"__ model developed using KT's proprietary technology. The term __"Korea-centric AI"__ refers to a model that deeply internalizes the unique values, cognitive frameworks, and commonsense reasoning inherent to Korean society. It goes beyond simply processing or generating Korean text—it reflects a deeper understanding of the socio-cultural norms and values that define Korean society.
Mi:dm 2.0 is released in two versions:
- **Mi:dm 2.0 Base**
An 11.5B parameter dense model designed to balance model size and performance.
It extends an 8B-scale model by applying the Depth-up Scaling (DuS) method, making it suitable for real-world applications that require both performance and versatility.
- **Mi:dm 2.0 Mini**
A lightweight 2.3B parameter dense model optimized for on-device environments and systems with limited GPU resources.
It was derived from the Base model through pruning and distillation to enable compact deployment.
> [!Note]
> Neither the pre-training nor the post-training data includes KT users' data.
<br>
### Quickstart
Here is the code snippet to run conversational inference with the model:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
model_name = "K-intelligence/Midm-2.0-Mini-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generation_config = GenerationConfig.from_pretrained(model_name)
prompt = "KT에 대해 소개해줘"
# message for inference
messages = [
{"role": "system",
"content": "Mi:dm(믿:음)은 KT에서 개발한 AI 기반 어시스턴트이다."},
{"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
output = model.generate(
input_ids.to("cuda"),
generation_config=generation_config,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=128,
do_sample=False,
)
print(tokenizer.decode(output[0]))
```
> [!NOTE]
> The `transformers` library should be version `4.45.0` or higher.
<br>
<br>
# Evaluation
#### Korean
<!-- first half table-->
<table>
<tr>
<th rowspan="2">Model</th>
<th colspan="5" align="center">Society & Culture</th>
<th colspan="3" align="center">General Knowledge</th>
<th colspan="3" align="center">Instruction Following</th>
</tr>
<tr>
<th align="center">K-Refer<sup>*</sup></th>
<th align="center">K-Refer-Hard<sup>*</sup></th>
<th align="center">Ko-Sovereign<sup>*</sup></th>
<th align="center">HAERAE</th>
<th align="center">Avg.</th>
<th align="center">KMMLU</th>
<th align="center">Ko-Sovereign<sup>*</sup></th>
<th align="center">Avg.</th>
<th align="center">Ko-IFEval</th>
<th align="center">Ko-MTBench</th>
<th align="center">Avg.</th>
</tr>
<!-- Small Models -->
<tr>
<td><strong>Qwen3-4B</strong></td>
<td align="center">53.6</td>
<td align="center">42.9</td>
<td align="center">35.8</td>
<td align="center">50.6</td>
<td align="center">45.7</td>
<td align="center"><strong>50.6</strong></td>
<td align="center"><strong>42.5</strong></td>
<td align="center"><strong>46.5</strong></td>
<td align="center"><strong>75.9</strong></td>
<td align="center">63.0</td>
<td align="center">69.4</td>
</tr>
<tr>
<td><strong>Exaone-3.5-2.4B-inst</strong></td>
<td align="center">64.0</td>
<td align="center"><strong>67.1</strong></td>
<td align="center"><strong>44.4</strong></td>
<td align="center">61.3</td>
<td align="center"><strong>59.2</strong></td>
<td align="center">43.5</td>
<td align="center">42.4</td>
<td align="center">43.0</td>
<td align="center">65.4</td>
<td align="center"><strong>74.0</strong></td>
<td align="center">68.9</td>
</tr>
<tr>
<td><strong>Mi:dm 2.0-Mini-inst</strong></td>
<td align="center"><strong>66.4</strong></td>
<td align="center">61.4</td>
<td align="center">36.7</td>
<td align="center"><strong>70.8</strong></td>
<td align="center">58.8</td>
<td align="center">45.1</td>
<td align="center">42.4</td>
<td align="center">43.8</td>
<td align="center">73.3</td>
<td align="center"><strong>74.0</strong></td>
<td align="center"><strong>73.6</strong></td>
</tr>
<!-- Spacer row -->
<tr><td colspan="13"> </td></tr>
<!-- Large Models -->
<tr>
<td><strong>Qwen3-14B</strong></td>
<td align="center">72.4</td>
<td align="center">65.7</td>
<td align="center">49.8</td>
<td align="center">68.4</td>
<td align="center">64.1</td>
<td align="center">55.4</td>
<td align="center">54.7</td>
<td align="center">55.1</td>
<td align="center"><strong>83.6</strong></td>
<td align="center">71</td>
<td align="center">77.3</td>
</tr>
<tr>
<td><strong>Llama-3.1-8B-inst</strong></td>
<td align="center">43.2</td>
<td align="center">36.4</td>
<td align="center">33.8</td>
<td align="center">49.5</td>
<td align="center">40.7</td>
<td align="center">33.0</td>
<td align="center">36.7</td>
<td align="center">34.8</td>
<td align="center">60.1</td>
<td align="center">57</td>
<td align="center">58.5</td>
</tr>
<tr>
<td><strong>Exaone-3.5-7.8B-inst</strong></td>
<td align="center">71.6</td>
<td align="center">69.3</td>
<td align="center">46.9</td>
<td align="center">72.9</td>
<td align="center">65.2</td>
<td align="center">52.6</td>
<td align="center">45.6</td>
<td align="center">49.1</td>
<td align="center">69.1</td>
<td align="center">79.6</td>
<td align="center">74.4</td>
</tr>
<tr>
<td><strong>Mi:dm 2.0-Base-inst</strong></td>
<td align="center"><strong>89.6</strong></td>
<td align="center"><strong>86.4</strong></td>
<td align="center"><strong>56.3</strong></td>
<td align="center"><strong>81.5</strong></td>
<td align="center"><strong>78.4</strong></td>
<td align="center"><strong>57.3</strong></td>
<td align="center"><strong>58.0</strong></td>
<td align="center"><strong>57.7</strong></td>
<td align="center">82</td>
<td align="center"><strong>89.7</strong></td>
<td align="center"><strong>85.9</strong></td>
</tr>
</table>
<!-- second half table-->
<table>
<tr>
<th rowspan="2" align="center">Model</th>
<th colspan="5" align="center">Comprehension</th>
<th colspan="5" align="center">Reasoning</th>
</tr>
<tr>
<th align="center">K-Prag<sup>*</sup></th>
<th align="center">K-Refer-Hard<sup>*</sup></th>
<th align="center">Ko-Best</th>
<th align="center">Ko-Sovereign<sup>*</sup></th>
<th align="center">Avg.</th>
<th align="center">Ko-Winogrande</th>
<th align="center">Ko-Best</th>
<th align="center">LogicKor</th>
<th align="center">HRM8K</th>
<th align="center">Avg.</th>
</tr>
<!-- Small Models -->
<tr>
<td><strong>Qwen3-4B</strong></td>
<td align="center"><strong>73.9<strong></td>
<td align="center">56.7</td>
<td align="center"><strong>91.5</strong></td>
<td align="center"><strong>43.5</strong></td>
<td align="center"><strong>66.6</strong></td>
<td align="center"><strong>67.5</strong></td>
<td align="center"><strong>69.2</strong></td>
<td align="center">5.6</td>
<td align="center"><strong>56.7</strong></td>
<td align="center"><strong>43.8</strong></td>
</tr>
<tr>
<td><strong>Exaone-3.5-2.4B-inst</strong></td>
<td align="center">68.7</td>
<td align="center"><strong>58.5</strong></td>
<td align="center">87.2</td>
<td align="center">38.0</td>
<td align="center">62.5</td>
<td align="center">60.3</td>
<td align="center">64.1</td>
<td align="center">7.4</td>
<td align="center">38.5</td>
<td align="center">36.7</td>
</tr>
<tr>
<td><strong>Mi:dm 2.0-Mini-inst</strong></td>
<td align="center">69.5</td>
<td align="center">55.4</td>
<td align="center">80.5</td>
<td align="center">42.5</td>
<td align="center">61.9</td>
<td align="center">61.7</td>
<td align="center">64.5</td>
<td align="center"><strong>7.7</strong></td>
<td align="center">39.9</td>
<td align="center">37.4</td>
</tr>
<!-- Visual Spacer -->
<tr><td colspan="11"> </td></tr>
<!-- Large Models -->
<tr>
<td><strong>Qwen3-14B</strong></td>
<td align="center"><strong>86.7</strong></td>
<td align="center"><strong>74.0</strong></td>
<td align="center">93.9</td>
<td align="center">52.0</td>
<td align="center"><strong>76.8</strong></td>
<td align="center"><strong>77.2</strong></td>
<td align="center"><strong>75.4</strong></td>
<td align="center">6.4</td>
<td align="center"><strong>64.5</strong></td>
<td align="center"><strong>48.8</strong></td>
</tr>
<tr>
<td><strong>Llama-3.1-8B-inst</strong></td>
<td align="center">59.9</td>
<td align="center">48.6</td>
<td align="center">77.4</td>
<td align="center">31.5</td>
<td align="center">51.5</td>
<td align="center">40.1</td>
<td align="center">26.0</td>
<td align="center">2.4</td>
<td align="center">30.9</td>
<td align="center">19.8</td>
</tr>
<tr>
<td><strong>Exaone-3.5-7.8B-inst</strong></td>
<td align="center">73.5</td>
<td align="center">61.9</td>
<td align="center">92.0</td>
<td align="center">44.0</td>
<td align="center">67.2</td>
<td align="center">64.6</td>
<td align="center">60.3</td>
<td align="center"><strong>8.6</strong></td>
<td align="center">49.7</td>
<td align="center">39.5</td>
</tr>
<tr>
<td><strong>Mi:dm 2.0-Base-inst</strong></td>
<td align="center">86.5</td>
<td align="center">70.8</td>
<td align="center"><strong>95.2</strong></td>
<td align="center"><strong>53.0</strong></td>
<td align="center">76.1</td>
<td align="center">75.1</td>
<td align="center">73.0</td>
<td align="center"><strong>8.6</strong></td>
<td align="center">52.9</td>
<td align="center">44.8</td>
</tr>
</table>
`*` indicates KT proprietary evaluation resources.
<br>
#### English
<table>
<tr>
<th rowspan="2" align="center">Model</th>
<th align="center">Instruction</th>
<th colspan="4" align="center">Reasoning</th>
<th align="center">Math</th>
<th align="center">Coding</th>
<th colspan="3" align="center">General Knowledge</th>
</tr>
<tr>
<th align="center">IFEval</th>
<th align="center">BBH</th>
<th align="center">GPQA</th>
<th align="center">MuSR</th>
<th align="center">Avg.</th>
<th align="center">GSM8K</th>
<th align="center">MBPP+</th>
<th align="center">MMLU-pro</th>
<th align="center">MMLU</th>
<th align="center">Avg.</th>
</tr>
<!-- Small Models -->
<tr>
<td><strong>Qwen3-4B</strong></td>
<td align="center">79.7</td>
<td align="center"><strong>79.0</strong></td>
<td align="center"><strong>39.8</strong></td>
<td align="center"><strong>58.5</strong></td>
<td align="center"><strong>59.1</strong></td>
<td align="center"><strong>90.4</strong></td>
<td align="center">62.4</td>
<td align="center">-</td>
<td align="center"><strong>73.3</strong></td>
<td align="center"><strong>73.3</strong></td>
</tr>
<tr>
<td><strong>Exaone-3.5-2.4B-inst</strong></td>
<td align="center"><strong>81.1</strong></td>
<td align="center">46.4</td>
<td align="center">28.1</td>
<td align="center">49.7</td>
<td align="center">41.4</td>
<td align="center">82.5</td>
<td align="center">59.8</td>
<td align="center">-</td>
<td align="center">59.5</td>
<td align="center">59.5</td>
</tr>
<tr>
<td><strong>Mi:dm 2.0-Mini-inst</strong></td>
<td align="center">73.6</td>
<td align="center">44.5</td>
<td align="center">26.6</td>
<td align="center">51.7</td>
<td align="center">40.9</td>
<td align="center">83.1</td>
<td align="center"><strong>60.9</strong></td>
<td align="center">-</td>
<td align="center">56.5</td>
<td align="center">56.5</td>
</tr>
<tr><td colspan="11"> </td></tr>
<!-- Large Models -->
<tr>
<td><strong>Qwen3-14B</strong></td>
<td align="center">83.9</td>
<td align="center"><strong>83.4</strong></td>
<td align="center"><strong>49.8</strong></td>
<td align="center"><strong>57.7</strong></td>
<td align="center"><strong>63.6</strong></td>
<td align="center">88.0</td>
<td align="center">73.4</td>
<td align="center"><strong>70.5</strong></td>
<td align="center"><strong>82.7</strong></td>
<td align="center"><strong>76.6</strong></td>
</tr>
<tr>
<td><strong>Llama-3.1-8B-inst</strong></td>
<td align="center">79.9</td>
<td align="center">60.3</td>
<td align="center">21.6</td>
<td align="center">50.3</td>
<td align="center">44.1</td>
<td align="center">81.2</td>
<td align="center"><strong>81.8</strong></td>
<td align="center">47.6</td>
<td align="center">70.7</td>
<td align="center">59.2</td>
</tr>
<tr>
<td><strong>Exaone-3.5-7.8B-inst</strong></td>
<td align="center">83.6</td>
<td align="center">50.1</td>
<td align="center">33.1</td>
<td align="center">51.2</td>
<td align="center">44.8</td>
<td align="center">81.1</td>
<td align="center">79.4</td>
<td align="center">40.7</td>
<td align="center">69.0</td>
<td align="center">54.8</td>
</tr>
<tr>
<td><strong>Mi:dm 2.0-Base-inst</strong></td>
<td align="center"><strong>84.0</strong></td>
<td align="center">77.7</td>
<td align="center">33.5</td>
<td align="center">51.9</td>
<td align="center">54.4</td>
<td align="center"><strong>91.6</strong></td>
<td align="center">77.5</td>
<td align="center">53.3</td>
<td align="center">73.7</td>
<td align="center">63.5</td>
</tr>
</table>
<br>
# Usage
### Run on Friendli.AI
You can try our model immediately via `Friendli.AI`. Simply click `Deploy` and then `Friendli Endpoints`.
> [!Note]
> Please note that a login to `Friendli.AI` is required after your fifth chat interaction.
<p>
<img src="./assets/image_1.png" alt="Left Image" width="36%" style="display:inline-block; margin-right:2%">
<img src="./assets/image_2.png" alt="Right Image" width="36%" style="display:inline-block">
</p>
### Run on Your Local Machine
We provide a detailed description about running Mi:dm 2.0 on your local machine using llama.cpp, LM Studio, and Ollama. Please check our [github](https://github.com/K-intelligence-Midm/Midm-2.0) for more information
### Deployment
To serve Mi:dm 2.0 using [vLLM](https://github.com/vllm-project/vllm)(`>=0.8.0`) with an OpenAI-compatible API:
```bash
vllm serve K-intelligence/Midm-2.0-Mini-Instruct
```
### Tutorials
To help our end-users easily use Mi:dm 2.0, we have provided comprehensive tutorials on [github](https://github.com/K-intelligence-Midm/Midm-2.0).
<br>
<br>
<br>
# More Information
### Limitation
* The training data for both Mi:dm 2.0 models consists primarily of English and Korean. Understanding and generation in other languages are not guaranteed.
* The model is not guaranteed to provide reliable advice in fields that require professional expertise, such as law, medicine, or finance.
* Researchers have made efforts to exclude unethical content from the training data — such as profanity, slurs, bias, and discriminatory language. However, despite these efforts, the model may still produce inappropriate expressions or factual inaccuracies.
### License
Mi:dm 2.0 is licensed under the [MIT License](./LICENSE).
<!-- ### Citation
```
@misc{,
title={},
author={},
year={2025},
eprint={},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={},
}
``` -->
### Contact
Mi:dm 2.0 Technical Inquiries: [email protected]
<br> |