marma commited on
Commit
591c7b1
·
1 Parent(s): d6ef8eb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -37,7 +37,7 @@ model-index:
37
  value: 19.145252414798616
38
  ---
39
  # Wav2vec 2.0 base-voxpopuli-sv-swedish
40
- Finetuned version of Facebooks [VoxPopuli-sv large](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **5.62%**, WER for Common Voice test set is **19.15%**.
41
 
42
  When using this model, make sure that your speech input is sampled at 16kHz.
43
 
@@ -49,8 +49,8 @@ import torchaudio
49
  from datasets import load_dataset
50
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
51
  test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]").
52
- processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-voxpopuli-sv-swedish")
53
- model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-voxpopuli-sv-swedish")
54
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
55
  # Preprocessing the datasets.
56
  # We need to read the aduio files as arrays
 
37
  value: 19.145252414798616
38
  ---
39
  # Wav2vec 2.0 base-voxpopuli-sv-swedish
40
+ Finetuned version of Facebooks [VoxPopuli-sv base](https://huggingface.co/facebook/wav2vec2-base-sv-voxpopuli) model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **5.62%**, WER for Common Voice test set is **19.15%**.
41
 
42
  When using this model, make sure that your speech input is sampled at 16kHz.
43
 
 
49
  from datasets import load_dataset
50
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
51
  test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]").
52
+ processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-base-voxpopuli-sv-swedish")
53
+ model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-base-voxpopuli-sv-swedish")
54
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
55
  # Preprocessing the datasets.
56
  # We need to read the aduio files as arrays