marma commited on
Commit
16a4caa
1 Parent(s): 2faa8a4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -11
README.md CHANGED
@@ -5,7 +5,7 @@ datasets:
5
  - NST Swedish ASR Database
6
  metrics:
7
  - wer
8
- #- cer
9
  tags:
10
  - audio
11
  - automatic-speech-recognition
@@ -15,15 +15,15 @@ license: cc-by-nc-4.0
15
  model-index:
16
  - name: Wav2vec 2.0 large VoxPopuli-sv swedish
17
  results:
18
- - task:
19
- name: Speech Recognition
20
- type: automatic-speech-recognition
21
- dataset:
22
- name: NST Swedish ASR Database
23
- metrics:
24
- - name: Test WER
25
- type: wer
26
- value: 5.192353080009441
27
  - task:
28
  name: Speech Recognition
29
  type: automatic-speech-recognition
@@ -34,7 +34,10 @@ model-index:
34
  metrics:
35
  - name: Test WER
36
  type: wer
37
- value: 17.37743757973392
 
 
 
38
  ---
39
  # Wav2vec 2.0 large-voxpopuli-sv-swedish
40
  Finetuned version of Facebooks [VoxPopuli-sv large](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **5.19%**, WER for Common Voice test set is **17.38%**.
 
5
  - NST Swedish ASR Database
6
  metrics:
7
  - wer
8
+ - cer
9
  tags:
10
  - audio
11
  - automatic-speech-recognition
 
15
  model-index:
16
  - name: Wav2vec 2.0 large VoxPopuli-sv swedish
17
  results:
18
+ # - task:
19
+ # name: Speech Recognition
20
+ # type: automatic-speech-recognition
21
+ # dataset:
22
+ # name: NST Swedish ASR Database
23
+ # metrics:
24
+ # - name: Test WER
25
+ # type: wer
26
+ # value: 5.192353080009441
27
  - task:
28
  name: Speech Recognition
29
  type: automatic-speech-recognition
 
34
  metrics:
35
  - name: Test WER
36
  type: wer
37
+ value: 14.343744
38
+ - name: Test CER
39
+ type: cer
40
+ value: 4.936313
41
  ---
42
  # Wav2vec 2.0 large-voxpopuli-sv-swedish
43
  Finetuned version of Facebooks [VoxPopuli-sv large](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **5.19%**, WER for Common Voice test set is **17.38%**.