Update README.md
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ datasets:
|
|
5 |
- NST Swedish ASR Database
|
6 |
metrics:
|
7 |
- wer
|
8 |
-
|
9 |
tags:
|
10 |
- audio
|
11 |
- automatic-speech-recognition
|
@@ -15,15 +15,15 @@ license: cc-by-nc-4.0
|
|
15 |
model-index:
|
16 |
- name: Wav2vec 2.0 large VoxPopuli-sv swedish
|
17 |
results:
|
18 |
-
- task:
|
19 |
-
name: Speech Recognition
|
20 |
-
type: automatic-speech-recognition
|
21 |
-
dataset:
|
22 |
-
name: NST Swedish ASR Database
|
23 |
-
metrics:
|
24 |
-
- name: Test WER
|
25 |
-
type: wer
|
26 |
-
value: 5.192353080009441
|
27 |
- task:
|
28 |
name: Speech Recognition
|
29 |
type: automatic-speech-recognition
|
@@ -34,7 +34,10 @@ model-index:
|
|
34 |
metrics:
|
35 |
- name: Test WER
|
36 |
type: wer
|
37 |
-
value:
|
|
|
|
|
|
|
38 |
---
|
39 |
# Wav2vec 2.0 large-voxpopuli-sv-swedish
|
40 |
Finetuned version of Facebooks [VoxPopuli-sv large](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **5.19%**, WER for Common Voice test set is **17.38%**.
|
|
|
5 |
- NST Swedish ASR Database
|
6 |
metrics:
|
7 |
- wer
|
8 |
+
- cer
|
9 |
tags:
|
10 |
- audio
|
11 |
- automatic-speech-recognition
|
|
|
15 |
model-index:
|
16 |
- name: Wav2vec 2.0 large VoxPopuli-sv swedish
|
17 |
results:
|
18 |
+
# - task:
|
19 |
+
# name: Speech Recognition
|
20 |
+
# type: automatic-speech-recognition
|
21 |
+
# dataset:
|
22 |
+
# name: NST Swedish ASR Database
|
23 |
+
# metrics:
|
24 |
+
# - name: Test WER
|
25 |
+
# type: wer
|
26 |
+
# value: 5.192353080009441
|
27 |
- task:
|
28 |
name: Speech Recognition
|
29 |
type: automatic-speech-recognition
|
|
|
34 |
metrics:
|
35 |
- name: Test WER
|
36 |
type: wer
|
37 |
+
value: 14.343744
|
38 |
+
- name: Test CER
|
39 |
+
type: cer
|
40 |
+
value: 4.936313
|
41 |
---
|
42 |
# Wav2vec 2.0 large-voxpopuli-sv-swedish
|
43 |
Finetuned version of Facebooks [VoxPopuli-sv large](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) model using NST and Common Voice data. Evalutation without a language model gives the following: WER for NST + Common Voice test set (2% of total sentences) is **5.19%**, WER for Common Voice test set is **17.38%**.
|