File size: 1,588 Bytes
4b586b0 3fe0463 4b586b0 99eaab5 208530d d6cad29 97fd6ba 4b586b0 b0bf73a 4a876c0 7b7a9e7 4b586b0 e4b21b6 c89565c e4b21b6 c89565c e4b21b6 4b586b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
base_model: KHongJae/full_train_TE_D_0_10000to50000
library_name: diffusers
license: creativeml-openrail-m
tags:
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
inference: true
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# KHongJae/Chatting_Based_Emoji_Generation_Model
T-Academy ASAC 6κΈ° DL νλ‘μ νΈμμ μ¬μ©ν μ΄λͺ¨ν°μ½ μμ± λͺ¨λΈμ
λλ€.
κΈ°μ‘΄ λ¬μ¬ν ν둬ννΈμμλ§ μλ νλ Stable Diffusionμ λνν ν둬ννΈμμ μλν μ μλλ‘ μλν λͺ¨λΈμ
λλ€.
DreamBooth for the text encoder was enabled: True.
## Intended uses & limitations
![img_0](./png1.png)
![img_1](./png2.png)
![img_2](./png3.png)
#### How to use
```python
pipeline = DiffusionPipeline.from_pretrained(
"KHongJae/Chatting_Based_Emoji_Generation_Model",
torch_dtype=torch.float16
).to("cuda")
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
prompt = "Create your own prompt"
negative_prompt = "Create your own negative prompt"
pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=200,
height=200,
num_inference_steps=50,
num_images_per_prompt=1,
generator=torch.manual_seed(123456789),
).images[0]
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |