File size: 1,555 Bytes
4b586b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe0463
4b586b0
99eaab5
208530d
d6cad29
97fd6ba
4b586b0
 
 
 
 
 
 
 
 
 
 
e4b21b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b586b0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
base_model: KHongJae/full_train_TE_D_0_10000to50000
library_name: diffusers
license: creativeml-openrail-m
tags:
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
inference: true
---

<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->


# KHongJae/Chatting_Based_Emoji_Generation_Model

T-Academy ASAC 6κΈ° DL ν”„λ‘œμ νŠΈμ—μ„œ μ‚¬μš©ν•œ 이λͺ¨ν‹°μ½˜ 생성 λͺ¨λΈμž…λ‹ˆλ‹€.

κΈ°μ‘΄ λ¬˜μ‚¬ν˜• ν”„λ‘¬ν”„νŠΈμ—μ„œλ§Œ μž‘λ™ ν•˜λ˜ Stable Diffusion을 λŒ€ν™”ν˜• ν”„λ‘¬ν”„νŠΈμ—μ„œ μž‘λ™ν•  수 μžˆλ„λ‘ μ‹œλ„ν•œ λͺ¨λΈμž…λ‹ˆλ‹€.




DreamBooth for the text encoder was enabled: True.


## Intended uses & limitations

#### How to use

```python
pipeline = DiffusionPipeline.from_pretrained(
    "KHongJae/Chatting_Based_Emoji_Generation_Model", torch_dtype=torch.float16, safety_checker=None
).to("cuda")
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
prompt = "Create your own prompt"
negative_prompt = "Create your own negative prompt"

pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=200,
    height=200,
    num_inference_steps=50,
    num_images_per_prompt=1,
    generator=torch.manual_seed(123456789),
).images[0]
```

#### Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

## Training details

[TODO: describe the data used to train the model]